Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cơ năng: \(W=0,064+0,096=0,16J\) \(\Rightarrow v_{max}=\sqrt{3,2}\)(m/s)
+ Thời điểm t1: \(v_1=\sqrt{1,92}\)(m/s)
+ Thời điểm t2: \(v_2=\sqrt{1,28}\)(m/s)
Biểu diễn sự biến thiên vận tốc bằng véc tơ quay ta có:
√3,2 √1,28 √1,92 v O M N
Do \(v_1^2+v_2^2=v_{max}^2\) nên OM vuông góc ON.
Như vậy góc quay là \(90^0\)
Thời gian: \(t=\frac{1}{4}T=\frac{\pi}{48}\Rightarrow T=\frac{\pi}{12}\)
\(\Rightarrow\omega=24\)(rad/s)
Biên độ: \(A=\frac{v_{max}}{\omega}=\frac{\sqrt{3,2}}{24}=0,07m=7cm\)
Chọn B
+Năng lượng toàn phần: W = 1 2 m A 2 w 2 = 1 2 0 , 1 . 0 , 1 2 . 20 2 =0,2J
+ Thế năng tại x = 8cm: W t = 1 2 k x 2 = 1 2 m . w 2 x 2 = 1 2 0 , 1 . 20 2 . 0 , 08 2 = 0 , 128 J
+ Từ W = Wt + Wđ => Động năng tại li độ x = 8cm : Wđ = 0,02 – 0,128 = 0,72(J)
Một con lắc lò xo dao động theo phương trình x = 4cos10t
\(W_t=W=\frac{1}{2}k.A^2=\frac{1}{2}m.w^2.A^2=8.10^{-3}=8\left(mJ\right)\)
Vậy C đúng
Thế năng cực đại của con lắc lò xo:
\(W_t=W=\frac{1}{2}k.A^2=\frac{1}{2}.m.\omega^2.A^2=8.10^{-3}=8mJ\)
Chọn C
\(t=0\Rightarrow x_1=4\cos\dfrac{\pi}{3}=2(cm)\)
\(t=\dfrac{T}{6}\Rightarrow x_2=-2cm\)
Do \(x_1=x_2\Rightarrow W_{t1}=W_{t2}\Rightarrow W_{đ1}=W_{đ2}\)
Như vậy tỉ số động năng bằng 1.
Vẽ vòng tròn ta ta có thể thấy được vị trí góc pha mà thế năng bằng động năng là
\(\varphi=\left(2k+1\right)\frac{\pi}{4}\)
Cứ sau góc \(\frac{\pi}{2}\) thì thế năng bằng động năng tương ứng với T/4
hu kỳ dao động là T = 0.2s suy ra \(\omega=10\pi\)
\(k=\omega^2m=\frac{50N}{m}\)
Ta có: \(\omega=2\pi f=5\pi\) ; A = 4cm
\(\omega=\sqrt{\frac{K}{m}}=\sqrt{\frac{K}{0,1}}\Rightarrow K=25\)
\(\Delta l_o=\frac{mg}{k}=\frac{0,1.10}{25}=4cm\)
Áp dụng CT: \(F_{đh}max=K\left(\Delta l_o+A\right)\) và \(F_{đh}min=k\left(\Delta l_o-A\right)\)
Suy ra, Fmax = 2 N và Fmin = 0 N
Theo mình là đáp án khác.
Chọn B
+ W t = 1 2 k x 2 = 1 2 m . w 2 x 2
+ Tại t = π (s) => x = -5 (cm) => W t = 1 2 0 , 1 . 20 2 . ( 5 . 10 - 2 ) 2 = 0 , 05 J