Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( cma ) là đã đc chứng minh ở phần a
( cmt ) là chứng minh trên
Bạn tick hộ mik nha ! Chúc bạn học tốt !
a) Xét △MNE và △HNE có
NE cạnh chung
góc MNE = góc ENH (gt)
⇒ △MNE = △HNE ( cạnh huyền - góc nhọn )
⇒ MN = HN ( 2 cạnh tương ứng )
⇒△MNH cân
b) Trong tam giác cân , đường phân giác đồng thời là đường trung tuyến , đường trung trực và đường cao mà NE là đường phân giác
⇒ NE là đường trung trực MH 3
c) △MNE = △HNE (cma ) ⇒ ME = EH ( 2cạnh tương ứng )
Xét △MEK và △HEP có
góc MEK = góc HEP ( đối đỉnh )
ME=EH ( cmt )
⇒△MEK = △HEP ( góc nhọn - cạnh góc vuông )
Có NM + MK = NK
NH + HP = MP
mà NM = NH ; EM=HP ⇒△MKP cân
Trong tam giác cân , đường pg đồng thờilà đường tung trực , đường cao mà NE là tia pg
⇒NE là đường trung trực ⇒ NE ⊥ PK
⇒
a]Xét hai tam giác vuông MNE và tam giác vuông FNE có ;
cạnh NE chung
góc MNE = góc FNE [ gt ]
Do đó ; tam giác MNE = tam giác FNE [ cạnh huyền - góc nhọn ]
b]Theo câu [ a ] ; tam giác MNE = tam giác FNE
\(\Rightarrow\) MN = FN ; EN = EF
\(\Rightarrow\) NE là đường trung trực của tam giác NMF
c]Vì ba điểm M , E , P thẳng hàng nên
góc MEP = 180độ = góc MEN + góc FEN + góc FEP
mà góc FEP = góc MEQ
suy ra ; góc QEF = góc MEN + góc FEN + góc MEQ = 180độ
vậy ba điểm Q,E,F thẳng hàng
học tốt nhé
kết bạn với mình nhé
Ta có : \(\Delta MNE=\Delta FNE\left(cma\right)\)
\(\Rightarrow ME=EF\)( 2 cạnh tương ứng )
Xét \(\Delta QME\)và \(\Delta PFE\)có :
\(MQ=EF\left(gt\right)\)
\(\widehat{QME}=\widehat{PFE}\left(=90^o\right)\)
\(ME=EF\left(cmt\right)\)
\(\Rightarrow\Delta QME=\Delta PFE\left(c.g.c\right)\)
\(\Rightarrow\widehat{MEQ}=\widehat{PEF}\)( 2 góc tương ứng )
Ta có : \(\widehat{MEF}+\widehat{FEP}=180^o\)( kề bù )
mà \(\widehat{FEP}=\widehat{MEQ}\left(cmt\right)\)
\(\Rightarrow\widehat{MEF}+\widehat{MEQ}=180^o\)
\(\Rightarrow\)3 điểm Q , E , F thẳng hàng
a) xét \(\Delta MNE,\Delta HNE:\)
NE là cạnh chung
\(\widehat{M}=\widehat{H}=90^o\left(gt\right)\)
\(\widehat{N_1}=\widehat{N_2}\)( do NE là tia phân giác \(\widehat{N}\) )
\(\Rightarrow\Delta MNE=\Delta HNE\left(ch-gn\right)\)
b) vì \(\Delta MNE=\Delta HNE\) ( theo a)
\(\Rightarrow NM=NH\\ ME=HE\)
mà N và E cùng thuộc đường trung trực của MH nên NE là đường trung trực của MH
c) xét \(\Delta MEK,\Delta HEP:\)
\(\widehat{E_1}=\widehat{E_2}=\left(dd\right)\)
\(\widehat{KME}=\widehat{PHE}=90^o\left(gt\right)\)
ME = HE (theo a)
\(\Rightarrow\Delta MEK=\Delta HEP\left(g.c.g\right)\)
\(\Rightarrow EK=EP\) ( 2 cạnh tương ứng )
a)Vì tam giác abc cân ở a =>góc abc=góc acb.mà góc acb =góc ecn (đối đỉnh) =>góc abc=góc ecn.
Xét tam giác bmd và tam giác cne có :bd=ce; góc abc=góc ecn =>tam giác bmd =tam giác ecn(cạnh góc vuông và góc nhọn kề)
=>md=ne.
b)Vì dm và en cung vuông góc với bc =>dm song song với en=>góc dmc=góc enc(so le trong)
xét tam giác dim và tam giác ein có :góc dmc =góc enc;góc mid=góc nie(đối đỉnh);góc mdi=góc nei=90 độ=>tam giác dim=tam giác ein(g.g.g.)
=>di=ie=>i là trung điểm de
c)gọi h là giao của ao với bc.
ta có:xét tam giác abo bằng tam giác aco=>bo=co=>o thuộc trung trực của bc .tương tự a thuộc trung trực của bc=>ao là trung trực bc
Em kham khảo link này nhé.
Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath
a, xét tam giác MDB và tam giác NEC có:
BD=CE(gt)
vì \(\widehat{B}\)=\(\widehat{ACB}\)mà\(\widehat{ACB}\)=\(\widehat{ECN}\)nên\(\widehat{B}\)=\(\widehat{ECN}\)
\(\Rightarrow\)tam giác MDB=tam giác NEC(CH-GN)
\(\Rightarrow\)MD=NE
a, Áp dụng tính chất đường vuông góc và đường xiên
Ta có : NM là hình chiếu của MQ
=> NM⊥MQ => NM<NE
b, Xét △MNE và △QNE
Ta có : \(N_1=N_2\)
BC cạnh chung
góc M = góc H = 90 độ
=> △MNE = △QNE (g.c.g)
c, Vì △MNE = △HNE => MN = HN ; EM = EH
=> NE là đường trung trực của MH M N Q H E 1 2