Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMHQ vuông tại H và ΔPKN vuông tại K có
MQ=PN
\(\widehat{MQH}=\widehat{PNK}\)
Do đó: ΔMHQ=ΔPKN
Suy ra: MH=PK
a: Xét tứ giác MQAP có
MQ//AP
MP//AQ
Do đó: MQAP là hình bình hành
a: Xét ΔKMI và ΔKNH có
\(\widehat{KMI}=\widehat{KNH}\)(hai góc so le trong, MI//HN)
KM=KN
\(\widehat{IKM}=\widehat{HKN}\)(hai góc đối đỉnh)
Do đó: ΔKMI=ΔKNH
=>KI=KH
=>K là trung điểm của HI
Xét tứ giác MINH có
K là trung điểm chung của MN và HI
nên MINH là hình bình hành
b: Ta có: MNPQ là hình bình hành
=>MP cắt NQ tại trung điểm của mỗi đường
=>O là trung điểm chung của MP và NQ
Xét ΔNMP có
PK,NO là các đường trung tuyến
PK cắt NO tại H
Do đó: H là trọng tâm của ΔNMP
Xét ΔMNP có
PK là trung tuyến
H là trọng tâm
Do đó: \(PH=\dfrac{2}{3}PK\)
PH+HK=PK
=>\(HK+\dfrac{2}{3}PK=PK\)
=>\(HK=\dfrac{1}{3}PK\)
=>PH=2KH
mà KI=2KH(K là trung điểm của IH)
nên PH=HI
=>H là trung điểm của PI
c: Xét ΔMNP có
NO là đường trung tuyến
H là trọng tâm
Do đó: OH=1/3NO
=>OH=1/3QO
QO+OH=QH
=>\(\dfrac{1}{3}QO+QO=QH\)
=>\(QH=\dfrac{4}{3}QO\)
=>\(\dfrac{QO}{QH}=\dfrac{3}{4}\)
Xét ΔQHP có OF//HP
nên \(\dfrac{QO}{QH}=\dfrac{QF}{QP}\)
=>\(\dfrac{QF}{QP}=\dfrac{3}{4}\)
b: Xét hình thang MNPQ có EF//QP
nên ME/MQ=NF/NP(1)
Xét ΔMQP có EO//QP
nên EO/QP=ME/MQ(2)
Xét ΔNQP có OF//QP
nên OF/QP=NF/NP(3)
Từ (1), (2) và (3) suy ra OE/QP=OF/QP
hay OE=OF