K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2023

a,xét 2 tam giác vuông MNH và NPH có:

mn=mp(gt)

mk là canh chung 

\(\Rightarrow\)tam giác MNH=tam giác NPH ( cạnh huyền-cạnh góc vuông)

b,Vì tam giác MNP là tam giác cân nên:

\(\Rightarrow\) đường trung tuyến của nó cũng là đường trung trực 

mà tia MK là đường trung tuyến của tam giác MNP

\(\Rightarrow\)MH là đường trung trực của PN

còn phần c thì bạn nên xem lại đề nhé

22 tháng 4 2023

mình cảm ơn ạ , phần c chắc đề sai á

7 tháng 6 2021

Bạn tự vẽ hình

`a)`Xét tam giác MNP cân có:MI là trung tuyến

`=>` MI là đường cao

`=>MI bot NP`

`b)` Xét tam giác vuông MIQ và tam giác vuông MIK có:

`MI` chung

`hat{NMI}=hat{PMI}`

`=>DeltaMIQ=DeltaMIK(ch-gn)`

`=>IQ=IK(1)`

`DeltaMIQ=DeltaMIK(ch-gn)`

`=>MQ=MK(2)`

`(1)(2)=>IM` là trung trực QK

7 tháng 6 2021

Bài khá dài, bạn đọc không hiểu cứ hỏi mình nha!

undefined

a) Xét ΔMHC và ΔMKB có 

MH=MK(gt)

\(\widehat{CMH}=\widehat{BMK}\)(hai góc đối đỉnh)

MC=MB(M là trung điểm của BC)

Do đó: ΔMHC=ΔMKB(c-g-c)

b) Ta có: HM⊥AC(gt)

AB⊥AC(gt)

Do đó: HM//AB(Định lí 1 từ vuông góc tới song song)

a: Xét ΔMHC và ΔMKB có

MH=MK

góc HMC=góc KMB

MC=MB

=>ΔMHC=ΔMKB

=>góc MKB=góc MHC=90 độ

b: Xét tứ giác AHBK có

AH//BK

HK//AB

=>AHBK là hbh

=>AH=KB

c: ΔABC vuông tại A có AM là trung tuyến

nên MA=MC

=>ΔMAC cân tại M

a: Xét ΔMHC và ΔMKB có

MH=MK

góc HMC=góc KMB

MC=MB

=>ΔMHC=ΔMKB

b: Xét tứ giác AHKB có

KB//AH

KB=AH

=>AHKB là hbhh

=>HK//AB và HK=AB

c: ΔABC vuông tại A

mà AM là trung tuyến

nên MA=MC

=>ΔMAC cân tại M

A B C H

a/ Xét tam giác AHB và tam giác AHC 

Góc AHB=AHC=90 độ

AB=AC(tam giác ABC cân tại A)

Góc B=C (tam giác ABC cân tại A)

=> Tam giác ABH=ACH(ch-gn)

mk nha

Vẽ cái hình ra đi

a: BC=căn 6^2+8^2=10cm

b: Xét ΔMHC và ΔMKB có

MH=MK

góc HMC=góc KMB

MC=MB

=>ΔMHC=ΔMKB

c: ΔABC vuông tại A 

mà AM là trung tuyến

nên MA=MC

=>ΔMAC cân tại M

=>MH là phân giác của góc CMA

d:

Xét ΔCAB có
M là trung điểm của CB

MH//AB

=>H là trung điểm của AC

Xét ΔCAB có

AM,BH là trung tuyến

AM cắt BH tại G

=>G là trọng tâm

=>C,G,I thẳng hàng

a: Xét ΔMHN vuông tại H và ΔMHP vuông tại H có

MN=MP

MH chung

=>ΔMHN=ΔMHP

b: ΔMHN=ΔMHP

=>HN=HP

=>H là trung điểm của NP

c: ΔMNH=ΔMPH

=>góc NMH=góc PMH

=>MH là phân giác của góc NMP