Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) -8m + 2
Vì m>n mà số nguyên âm nào có trị tuyệt đối lớn hơn thì bé hơn nên suy ra ta có:
-8m + 2 < - 8n + 2
b) 6n - 1 với 6m + 2
6n - 1 < 6m + 2
Ta có :
m > n
-m < -n (Vì số âm nên nó ngược lại)
-8m < -8n (Nhân 8 vào 2 vế)
-8m + 1 < -8n + 1 (Cộng 1 vào hai vế)
=> Điều cần chứng minh
\(M=5x^2+10y^2-2xy+4x-6y+2\)
\(=\left(x^2-2xy+y^2\right)+\left(4x^2+4x+1\right)+\left(9y^2-6y+1\right)+1\)
\(=\left(x-y\right)^2+\left(2x+1\right)^2+\left(3y-1\right)^2+1\ge1\)
vậy \(M\ge N\)
a) Vì \(a>b\)\(\Rightarrow2020a>2020b\)
\(\Rightarrow2020a-3>2020b-3\)
b) Vì \(50-2020m< 50-2020n\)\(\Rightarrow2020m>2020n\)
\(\Rightarrow m>n\)
Bài 1:
Ta có: m>n
\(\Leftrightarrow8m>8n\)
\(\Leftrightarrow8m-2>8n-2\)
Bài 3:
a) Ta có: 2-5x<3(2-x)
\(\Leftrightarrow2-5x< 6-3x\)
\(\Leftrightarrow2-5x-6+3x< 0\)
\(\Leftrightarrow-4-2x< 0\)
\(\Leftrightarrow2x< -4\)
hay x<-2
b) Ta có: \(\frac{5x-2}{3}\ge x+1\)
\(\Leftrightarrow\frac{5x-2}{3}-x-1\ge0\)
\(\Leftrightarrow\frac{5x-2}{3}-\frac{3x}{3}-\frac{3}{3}\ge0\)
\(\Leftrightarrow5x-2-3x-3\ge0\)
\(\Leftrightarrow2x-5\ge0\)
\(\Leftrightarrow2x\ge5\)
hay \(x\ge\frac{5}{2}\)
Bài 4:
Ta có: |x+5|=3x-2
\(\Leftrightarrow\left[{}\begin{matrix}x+5=3x-2\\x+5=2-3x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+5-3x+2=0\\x+5-2+3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-2x+7=0\\4x+3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}-2x=-7\\4x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=\frac{-3}{4}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{7}{2};\frac{-3}{4}\right\}\)
1. Cho m > n, hãy so sánh 8m - 2 với 8n - 2
Ta có : \(m>n\)
\(\Rightarrow8m>8n\)
\(\Rightarrow8m-2>8n-2\)
Ta có:
m>n=>8m-2>8n-2
) Ta có m > n
nên: 8m > 8n (Nhân 2 vế của bđt với 8)
8m + (–2) > 5n + (–2) (Cộng 2 vế của bđt với –2)
\(\Leftrightarrow\) 8m – 2 > 8n – 2