\(\sqrt{20}=2\sqrt{5}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019

Có: \(\sqrt{a}\sqrt{b}=\sqrt{âb}\)

\(\Rightarrow\sqrt{20}=\sqrt{4}\sqrt{5}=2\sqrt{5}\)

21 tháng 7 2019

\(\sqrt{20}=\sqrt{2^2.5}=\sqrt{5}.\sqrt{2^2}=2\sqrt{5}\)

AH
Akai Haruma
Giáo viên
24 tháng 9 2020

Lời giải:

Bạn xem lại công thức khai phương lớp 9

$5\sqrt{2}=\sqrt{5^2}.\sqrt{2}=\sqrt{25}.\sqrt{2}=\sqrt{25.2}=\sqrt{50}$

6 tháng 8 2020

con cacacacacacacacacacacacacacacacacacca

@@22@22@22@@222@@2@@2@@@2@2

6 tháng 8 2020

bạn kiểm tra lại đề bài cấu (c)

11 tháng 8 2018

\(\left(\sqrt[3]{2}+\sqrt[3]{20}-\sqrt[3]{25}\right)^2\)

\(=\sqrt[3]{4}+2\sqrt[3]{50}+5\sqrt[3]{5}+2\left(2\sqrt[3]{5}-\sqrt[3]{50}-5\sqrt[3]{4}\right)\)

\(=9\sqrt[3]{5}-9\sqrt[3]{4}=9\left(\sqrt[3]{5}-\sqrt[3]{4}\right)\)

\(\sqrt[3]{2}+\sqrt[3]{20}-\sqrt[3]{25}=3\sqrt{\sqrt[3]{5}-\sqrt[3]{4}}\)

12 tháng 8 2018

thanks bạn nhiều nha!!!! Chúc bạn hok tốt

17 tháng 8 2020

+) \(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)

\(=3\sqrt{4.5}-2\sqrt{9.5}+4\sqrt{5}\)

\(=6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)

\(=4\sqrt{5}\)

+) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)

\(=\left(2\sqrt{7}-\sqrt{28}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)

\(=\left(2\sqrt{7}-2\sqrt{7}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)

\(=7+7\sqrt{8}\)

29 tháng 7 2020

\(A=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

9 tháng 7 2018

a) \(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}=\sqrt{2}+1-\left(\sqrt{2}-1\right)=2\)

b) \(\dfrac{1}{\sqrt{3}-1}-\dfrac{1}{\sqrt{3}+1}=\dfrac{\sqrt{3}+1-\left(\sqrt{3}-1\right)}{3-1}=1\)

c) \(2\sqrt{5}-3\sqrt{45}+\sqrt{500}=2\sqrt{5}-9\sqrt{5}+10\sqrt{5}=3\sqrt{5}\)

d) \(\dfrac{1}{\sqrt{3}+\sqrt{2}}-\dfrac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}=\dfrac{1}{\sqrt{3}+\sqrt{2}}-\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{4}\right)}{\sqrt{5}-2}=\dfrac{1}{\sqrt{3}+\sqrt{2}}-\sqrt{3}=\dfrac{1-\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}=\dfrac{1-3-\sqrt{6}}{\sqrt{3}+\sqrt{2}}=\dfrac{-2-\sqrt{6}}{\sqrt{3}+\sqrt{2}}=\dfrac{-\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}=-\sqrt{2}\)

e) \(\dfrac{1}{2+\sqrt{3}}-\dfrac{1}{2-\sqrt{3}}+5\sqrt{3}=\dfrac{2-\sqrt{3}-\left(2+\sqrt{3}\right)}{4-3}+5\sqrt{3}=-2\sqrt{3}+5\sqrt{3}=3\sqrt{3}\)

f) \(\sqrt{3}-\sqrt{4+2\sqrt{3}}=\sqrt{3}-\left(\sqrt{3}+1\right)=-1\)

g) \(\dfrac{5-\sqrt{5}}{\sqrt{5}-1}-\dfrac{4}{\sqrt{5}+1}=\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}-\dfrac{4}{\sqrt{5}+1}=\sqrt{5}-\dfrac{4}{\sqrt{5}+1}=\dfrac{5+\sqrt{5}-4}{\sqrt{5}+1}=1\)

h)\(\sqrt{37-20\sqrt{3}+\sqrt{37+20\sqrt{3}}}=\sqrt{37-20\sqrt{3}+\left(5+2\sqrt{3}\right)}=\sqrt{42-18\sqrt{3}}=\sqrt{\left(3\sqrt{3}+3\right)^2+6}\)

1 tháng 4 2020

a) \(\sqrt{17}-4\) b) \(\sqrt{3}\) c) \(\frac{\sqrt{2}}{2}\) d)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) e) \(x-\sqrt{5}\)

f) \(4+2\sqrt{3}\) g) \(3+2\sqrt{2}\) h) \(x+\sqrt{x}+1\) i) \(\frac{3\sqrt{5}-\sqrt{15}}{10}\)

k) \(\sqrt{5}+\sqrt{6}\) i) 5 h) 0 l) \(\sqrt{5}+\sqrt{3}\) m) \(\frac{20\sqrt{3}}{3}\) d) 0

1 tháng 4 2020

ban ơi ccachs làm

\(A=\sqrt{47+\sqrt{5}}\cdot\sqrt{47-\sqrt{5}}\)

\(=\sqrt{2204}=2\sqrt{551}\)

\(B=5-2\sqrt{6}+10+\sqrt{6}=15-\sqrt{6}\)