\(\sqrt{2}\)= \(\sqrt{50}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 9 2020

Lời giải:

Bạn xem lại công thức khai phương lớp 9

$5\sqrt{2}=\sqrt{5^2}.\sqrt{2}=\sqrt{25}.\sqrt{2}=\sqrt{25.2}=\sqrt{50}$

8 tháng 12 2018

a) \(2\sqrt{50}-3\sqrt{32}-\sqrt{162}+5\sqrt{98}\)

=\(2.5\sqrt{2}-3.4\sqrt{2}-9\sqrt{2}+5.7\sqrt{2}\)

= \(10\sqrt{2}-12\sqrt{2}-9\sqrt{2}+35\sqrt{2}\)

= \(24\sqrt{2}\)

b) \(\sqrt{8+2\sqrt{7}}+\sqrt{11-4\sqrt{7}}\)

= \(\sqrt{7+2\sqrt{7}+1}+\sqrt{7-4\sqrt{7}+4}\)

= \(\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-2\right)^2}\)

= \(\sqrt{7}+1+\sqrt{7}-2\)

= \(2\sqrt{7}-1\)

c) \(\dfrac{10}{\sqrt{5}}+\dfrac{8}{3+\sqrt{5}}-\dfrac{\sqrt{18}-3\sqrt{5}}{\sqrt{2}-\sqrt{5}}\)

= \(2\sqrt{5}+6-2\sqrt{5}-3\)

= 3

21 tháng 7 2019

Có: \(\sqrt{a}\sqrt{b}=\sqrt{âb}\)

\(\Rightarrow\sqrt{20}=\sqrt{4}\sqrt{5}=2\sqrt{5}\)

21 tháng 7 2019

\(\sqrt{20}=\sqrt{2^2.5}=\sqrt{5}.\sqrt{2^2}=2\sqrt{5}\)

13 tháng 6 2018

1.\(=5\sqrt{2}-3\sqrt{2}+10\sqrt{2}-9\sqrt{2}=3\sqrt{2}\)

2.\(=5\sqrt{5}+4\sqrt{5}-9\sqrt{5}=0\)

7 tháng 9 2020

Đề bài mình ghi ở trên đây thây

7 tháng 9 2020

Ý mình là đề bảo tính , chứng minh là gì

a: Sửa đề: \(5\dfrac{1}{5}-\dfrac{1}{2}\sqrt{20}+\sqrt{5}\)

\(=5.2-\dfrac{1}{2}\cdot2\sqrt{5}+\sqrt{5}=5.2\)

b: \(=\dfrac{1}{2}\sqrt{2}+\dfrac{3}{2}\sqrt{2}+\dfrac{5}{2}\sqrt{2}=\dfrac{9}{2}\sqrt{2}\)

c: \(=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+\sqrt{77}=-\sqrt{5}+9\sqrt{2}+\sqrt{77}\)

d: \(=\dfrac{1}{10}\cdot10\sqrt{2}+\dfrac{2}{5}\sqrt{2}+0.4\cdot5\sqrt{2}\)

\(=\dfrac{17}{5}\sqrt{2}\)

11 tháng 12 2019

a) = \(5\sqrt{2}-3\sqrt{6}+3\sqrt{2}+5\sqrt{6}\)

= \(8\sqrt{2}+2\sqrt{6}\)

b) = \(2\sqrt{3}-4\sqrt{2}-5\sqrt{3}-\sqrt{2}\)

= \(-3\sqrt{3}-5\sqrt{2}\)

c) = \(\frac{\left(\sqrt{2}-1\right)\left(2+\sqrt{2}\right)}{\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right)}\)

=\(\frac{2\sqrt{2}+2-2-\sqrt{2}}{2^2-\sqrt{2^2}}\)

=\(\frac{\sqrt{2}}{4-2}\) = \(\frac{\sqrt{2}}{2}\)

d) = \(2\sqrt{6}-5\sqrt{6}+2\sqrt{2}\)

=\(-3\sqrt{6}+2\sqrt{2}\)

e) = \(8\sqrt{6}+3\sqrt{6}-6\sqrt{6}=5\sqrt{6}\)

f) = \(4\sqrt{3}+9\sqrt{3}-4\sqrt{3}=9\sqrt{3}\)

g) = \(10+5\sqrt{10}-5\sqrt{10}=10\)

h) = \(\frac{\left(3+\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}+\frac{\left(3-\sqrt{3}\right)\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\)

= \(\frac{9+3\sqrt{3}+3\sqrt{3}+3}{3^2-\sqrt{3^2}}+\frac{9-3\sqrt{3}-3\sqrt{3}+3}{3^2-\sqrt{3^2}}\)

= \(\frac{12+6\sqrt{3}}{9-3}+\frac{12-6\sqrt{3}}{9-3}\)

= \(\frac{12+6\sqrt{3}+12-6\sqrt{3}}{6}\)

= \(\frac{24}{6}=4\)

k) = \(\left(2\sqrt{7}-2\sqrt{3}+\sqrt{7}\right).\sqrt{7}+2\sqrt{21}\)

= \(\left(3\sqrt{7}-2\sqrt{3}\right).\sqrt{7}+2\sqrt{21}\)

= \(21-2\sqrt{21}+2\sqrt{21}=21\)

l) = \(\frac{\left(2\sqrt{3}-\sqrt{6}\right)\left(\sqrt{8}+2\right)}{\left(\sqrt{8}-2\right)\left(\sqrt{8}+2\right)}\)

= \(\frac{4\sqrt{6}+4\sqrt{3}-4\sqrt{3}-2\sqrt{6}}{\sqrt{8^2}-2^2}\)

= \(\frac{2\sqrt{6}}{8-4}=\frac{2\sqrt{6}}{4}=\frac{\sqrt{6}}{2}\)

19 tháng 10 2020

Chờ từ trưa không idol nào đụng thì thôi em xin vậy :))

BT1:

Ta có: \(A\cdot B=\sqrt{4+\sqrt{10+2\sqrt{5}}}\cdot\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(=\sqrt{16-10-2\sqrt{5}}\)

\(=\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)

Từ đó thay vào: \(\left(A-B\right)^2\)

\(=A^2-2AB+B^2\)

\(=4+\sqrt{10+2\sqrt{5}}-2\left(\sqrt{5}-1\right)+4-\sqrt{10+2\sqrt{5}}\)

\(=10-2\sqrt{5}\)

\(\Rightarrow A-B=\sqrt{10-2\sqrt{5}}\)

BT2:

Đặt \(B=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(\Leftrightarrow B^2=4+\sqrt{7}-2\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}+4-\sqrt{7}\)

\(=8-2\sqrt{16-7}=8-2\cdot3=2\)

\(\Rightarrow B=\sqrt{2}\)

\(\Rightarrow A=B-\sqrt{2}=\sqrt{2}-\sqrt{2}=0\)

19 tháng 10 2020

BT3:

đk: \(\orbr{\begin{cases}x\ge2\\x< -2\end{cases}}\)

\(C=\frac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}+\frac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)

\(C=\frac{\left(x+2+\sqrt{x^2-4}\right)^2}{\left(x+2\right)^2-\left(x^2-4\right)}+\frac{\left(x+2-\sqrt{x^2-4}\right)^2}{\left(x+2\right)^2-\left(x^2-4\right)}\)

\(C=\frac{\left(x+2\right)^2+2\left(x+2\right)\sqrt{x^2-4}+x^2-4+\left(x+2\right)^2-2\left(x+2\right)\sqrt{x^2-4}+x^2-4}{x^2+4x+4-x^2+4}\)

\(C=\frac{2x^2+8x+8+2x^2-8}{4x+8}\)

\(C=\frac{4x^2+8x}{4x+8}=x\)

Vậy C = x