Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình là dân VIOLYMPIC đây ,nhưng sorry nha mình không phải lớp 9 mà là lớp 6, nếu trên onlinemath thì nên gọi là bạn nhớ kết bạn với mình nhé .thank you
Mk nghĩ tam giác này đồng dạng với tam giác nọ
Mk ko chắc lắm đâu , đấy là suy nghĩ của mk thui
ai cần link nhanc one piêc thì bảo tui nha
tui có mấy cái link nhạc oánh nhau vs cả nhạc trong heart of gold nữa
Điều kiện : x + 1 \(\ge\) 0; 11 - x \(\ge\) 0
<=> \(-1\le x\le11\). Khi đo, bình phương 2 vế pt trở thành:
x+ 1 = (11 - x)2
=> giải pt bậc 2. ...
*) Muốn bình phương 2 vế được ph tương đương cần điều kiện 2 vế ko âm
Phương trình đường thẳng nối 2 điểm \(A\left(x_A;y_A\right)\)và \(B\left(x_B;y_B\right)\)là:
\(\frac{y-y_A}{y_B-y_A}=\frac{x-x_A}{x_B-x_A}\)
Rồi bạn biến đổi để về dạng tổng quát. Không cần giải hệ mà có luôn công thức nâng cao.
(a) Gọi \(O'\) là tâm đường tròn ngoại tiếp tứ giác \(AIFE.\)
Ta có : \(\hat{IEF}=\hat{IAF}\) (\(AIFE\) nội tiếp đường tròn \(\left(O'\right)\)) hay \(\hat{IEF}=\hat{IAB}.\)
Mà : \(\hat{IAB}=\hat{ICB}\) (hai góc nội tiếp đường tròn \(\left(O\right)\) cùng chắn cung \(IB\)).
Do đó, \(\hat{IEF}=\hat{ICB}.\)
Ta cũng có : \(\hat{FIE}=\hat{FAE}\) (\(AIFE\) nội tiếp đường tròn \(\left(O'\right)\)) hay \(\hat{FIE}=\hat{BAC}.\)
Mà : \(\hat{BAC}=\hat{BIC}\) (hai góc nội tiếp đường tròn \(\left(O\right)\) cùng chắn cung \(BC\)).
Do đó, \(\hat{FIE}=\hat{BIC}.\)
Xét \(\Delta IBC,\Delta IFE:\left\{{}\begin{matrix}\hat{ICB}=\hat{IEF}\left(cmt\right)\\\hat{BIC}=\hat{FIE}\left(cmt\right)\end{matrix}\right.\Rightarrow\Delta IBE\sim\Delta IFE\left(g.g\right)\) (đpcm).
(b) Mình tạm thời chưa nghĩ ra nhé:)
TL:
So do I, neither do I là một dạng của đảo ngữ.
@@@@@@@@@@@@@
@tuantuthan
HT
Cho mình hỏi những dạng câu: So do i, neither do i,... có phải là 1 dạng của đảo ngữ ko?
nó là 1 dạng của đảo ngữ nhé