
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\left(\frac{10}{99}+\frac{11}{199}-\frac{12}{299}\right)\times\left(\frac{1}{2}-\frac{1}{3}+-\frac{1}{6}\right)\)
\(=\left(\frac{10}{99}+\frac{11}{199}-\frac{12}{299}\right)\times\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
\(=\left(\frac{10}{99}+\frac{11}{199}-\frac{12}{299}\right)\times\left(\frac{3}{6}-\frac{2}{6}-\frac{1}{6}\right)\)
\(=\left(\frac{10}{99}+\frac{11}{199}-\frac{12}{299}\right)\times0\)
\(=0\)


\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
nhân A với (3-1) ta có :
\(A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(=3^{32}-1\)
\(B=3^{32}+-1=3^{32}-1\)
\(\Rightarrow A=B\)


Chứng minh chia hết cho 31
C = 2 + 22 + 23 + ... + 299 + 2100
= ( 2 + 22 + 23 + 24 + 25 ) + ( 26 + 27 + 28 + 29 + 210 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )
= 2( 1 + 2 + 22 + 23 + 24 ) + 26( 1 + 2 + 22 + 23 + 24 ) + ... + 296( 1 + 2 + 22 + 23 + 24 )
= 2.31 + 26.31 + ... + 296.31
= 31( 2 + 26 + ... + 296 ) chia hết cho 31 ( đpcm )
Tính tổng C
C = 2 + 22 + 23 + ... + 299 + 2100
=> 2C = 2( 2 + 22 + 23 + ... + 299 + 2100 )
= 22 + 23 + ... + 2100 + 2101
=> C = 2C - C
= 22 + 23 + ... + 2100 + 2101 - ( 2 + 22 + 23 + ... + 299 + 2100 )
= 22 + 23 + ... + 2100 + 2101 - 2 - 22 - 23 - ... - 299 - 2100
= 2101 - 2
Tìm x để 22x-1 - 2 = C
22x-1 - 2 = C
<=> 22x-1 - 2 = 2101 - 2
<=> 22x-1 = 2101
<=> 2x - 1 = 101
<=> 2x = 102
<=> x = 51

4n-1 chia het cho n-3
4n-12+11 chia het cho n-3
11 chia het cho n-3
n-3 E {-1;1;11;-11}
nE{2;3;14;-8}
B1 : Đặt cái cụm đó là A , B hoặc gì gì đó tùy bạn
B2 : Nhân lên theo lũy thừa để nâng lũy thừa lên ( vd như câu bạn là nhân A với 3 )
B3 : Lấy phần đã nhân lên trừ cho A
B4 : Thực hiện chuyển vế sao cho 1 vế là A
Để xíu mình làm cho
Đặt \(A=1+3+3^2+...+3^{2021}\)
\(=>3A=3+3^2+3^3+...+3^{2021}+3^{2022}\)
\(=>3A-A=3+3^2+3^3+...+3^{2021}+3^{2022}-1-3-3^2-...-3^{2021}\)
\(=\left(3+3^2+3^3+...+3^{2021}\right)+3^{2022}-1-\left(3+3^2+3^3+...+3^{2021}\right)=3^{2022}-1\)
\(=>2A=3^{2022}-1=>A=\frac{3^{2022}-1}{2}\)
Vậy ...