\(x+\sqrt{2-x^2}\) nếu tìm max mình áp dụng bất dẳng thức CÔ SI dc...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x+\sqrt{2-x}\ge2\sqrt{x\sqrt{2-x}}\)

Bìa này không thể dùng cauchy bạn ạ

28 tháng 9 2016

mình bình phương lên

7 tháng 6 2018

1/ Đặt \(\hept{\begin{cases}\sqrt{x-2013}=a\\\sqrt{x-2014}=b\end{cases}}\)

Thì ta có:

\(\frac{\sqrt{x-2013}}{x+2}+\frac{\sqrt{x-2014}}{x}=\frac{a}{a^2+2015}+\frac{b}{b^2+2014}\)

\(\le\frac{a}{2a\sqrt{2015}}+\frac{b}{2b\sqrt{2014}}=\frac{1}{2\sqrt{2015}}+\frac{1}{2\sqrt{2014}}\)

7 tháng 6 2018

2/ \(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\)

\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)\)

\(=\frac{3}{4}\)

14 tháng 6 2019

\(a,\)\(\sqrt{x^2}\)

\(đkxđ\Leftrightarrow x^2\ge0\)( luôn đúng với \(\forall x\))

\(b,\)\(\sqrt{-4x^2}=\sqrt{-\left(2x\right)^2}\)

\(đkxđ\Leftrightarrow\left(2x\right)^2\le0\)

Vì \(2x^2\ge0\Rightarrow2x^2=0\Leftrightarrow x=0\)

\(c,\)\(\sqrt{\left(x-1\right)\left(x-3\right)}\)

\(đkxđ\Leftrightarrow\left(x-1\right)\left(x-3\right)\ge0\)

\(\Rightarrow\orbr{\begin{cases}x-1\ge0;x-3\ge0\\x-1< 0;x-3< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x\ge1;x\ge3\\x< 1;x< 3\end{cases}\Rightarrow\orbr{\begin{cases}x\ge3\\x< 1\end{cases}}}\)

14 tháng 6 2019

Gợi ý:

\(\sqrt{x^2}=|x|=x\)=>luôn có nghiệm

\(\sqrt{-4x^2}=x\sqrt{-4}\)=>không có giá trị nào của x để căn thức có nghĩa 

Để\(\sqrt{\left(x-1\right)\left(x-3\right)}\)có nghĩa\(\Rightarrow\left(x-1\right)\left(x-3\right)\ge0\Leftrightarrow\orbr{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3\)

\(\sqrt{x^2-4}\)

\(\Rightarrow x^2-4\ge0\)

\(\Rightarrow\orbr{\begin{cases}x\le-2\\x\ge2\end{cases}}\)

\(\sqrt{1-x^2}\Rightarrow1-x^2\ge0\Leftrightarrow-1\le x\le1\)

15 tháng 8 2021

a, Để A có nghĩa \(x^2-1\ge0\Leftrightarrow\left(x-1\right)\left(x+1\right)\ge0\Leftrightarrow x\le-1;x\ge1\)

b,  \(A=\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)với \(x\ge\sqrt{2}\)

\(=\sqrt{x^2-1+2\sqrt{x^2-1}+1}-\sqrt{x^2-1-2\sqrt{x^2-1}+1}\)

\(=\sqrt{\left(\sqrt{x^2-1}+1\right)^2}-\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\)

\(=\sqrt{x^2-1}+1-\sqrt{x^2-1}+2=2\)

1 tháng 11 2016

Ta có 

\(2\sqrt{a^2-ab+b^2}\ge\frac{a+b}{2}=2×2c=4c\)

\(\sqrt{a^2-2ac+4c^2}\ge\frac{a+2c}{2}\)

\(\sqrt{b^2-2bc+4c^2}\ge\frac{b+2c}{2}\)

Cộng vế theo vế ta được

\(\ge4c+\frac{a+b+4c}{2}=8c\)

Đề sai rồi đề đúng phải là

\(2\sqrt{a^2-ab+b^2}+\sqrt{a^2-2ac+4c^2}+\sqrt{b^2-2bc+4c^2}\ge8c\)

1 tháng 11 2016

VP=8C ms đúng ở đây 

Xem câu hỏi

2 tháng 11 2016

lời giải ở đây Câu hỏi của Hỏi Làm Gì - Toán lớp 9 - Học toán với OnlineMath

2 tháng 11 2016

mà bn vt đề sai thì fai

20 tháng 5 2019

ĐKXĐ : \(x\ge0\)

\(A=\frac{2}{3}.\frac{2+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)^2+\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2}{\left[1+\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2\right]\left[1+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)^2\right]}.\frac{2010}{x+1}\)

\(A=\frac{2}{3}.\frac{2+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}+\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2-2\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)}{\left[1+\frac{\left(2\sqrt{x}+1\right)^2}{3}\right]\left[1+\frac{\left(2\sqrt{x}-1\right)^2}{3}\right]}.\frac{2010}{x+1}\)

\(A=\frac{2}{3}.\frac{2+\left(\frac{4\sqrt{x}}{\sqrt{3}}\right)^2-\frac{2\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}{3}}{\left(\frac{4x+4\sqrt{x}+4}{3}\right)\left(\frac{4x-4\sqrt{x}+4}{3}\right)}.\frac{2010}{x+1}\)

\(A=\frac{2}{3}.\frac{2+\frac{16x}{3}-\frac{2\left(4x-1\right)}{3}}{\frac{16\left(x+1+\sqrt{x}\right)\left(x+1-\sqrt{x}\right)}{9}}.\frac{2010}{x+1}\)

\(A=\frac{2}{3}.\frac{\frac{6+16x-8x+2}{3}}{\frac{16\left(x+1\right)^2-16x}{9}}.\frac{2010}{x+1}\)

\(A=\frac{x+1}{x^2+x+1}.\frac{2010}{x+1}=\frac{2010}{x^2+x+1}\le2010\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=0\)

... 

23 tháng 5 2019

\(A\le\frac{4.2010}{3}\) ma ban quan

21 tháng 7 2016

Áp dụng BĐT Cô - si cho hai số không âm ta được

\(x^2+3+\frac{1}{x^2+3}\ge2\sqrt{\left(x^2+3\right)\cdot\frac{1}{x^2+3}}=2\sqrt{1}=2\)

Dấu = xảy ra \(\Leftrightarrow x^2+3=\frac{1}{x^2+3}\)

\(\Leftrightarrow\left(x^2+3\right)^2=1\)

\(\Leftrightarrow x^4+6x^2+9=1\)

\(\Leftrightarrow x^4+6x^2+8=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x^2+2\right)=0\) hoặc \(\left(x^2+4\right)=0\)

\(\Leftrightarrow x^2=-2\) hoặc \(x^2=-4\) (vô nghiệm) (Sai đề r hay s á b, mik nghĩ là \(x^2-3\)ms đúng)

Vậy GTNN của M là 2