\(\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+\frac{1}{1+2+3+...+39}\)

CMR:M<

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019

Mik lười quá bạn tham khảo câu 3 tại đây nhé:

Câu hỏi của nguyen linh nhi - Toán lớp 6 - Học toán với OnlineMath

22 tháng 7 2019

\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\)

\(2S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}-\frac{1}{38\cdot39}\)

\(2S=\frac{1}{2}-\frac{1}{38\cdot39}\)

\(S=\frac{1}{4}-\frac{1}{2\cdot38\cdot39}< \frac{1}{4}\)

5 tháng 5 2019

\(\frac{3}{2^2}\cdot\frac{8}{3^2}\cdot\frac{15}{4^2}\cdot.....\cdot\frac{899}{30^2}\)

\(=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\frac{3\cdot5}{4\cdot4}\cdot.....\cdot\frac{29\cdot31}{30\cdot30}\)

\(=\frac{1}{2}\cdot\frac{3}{2}\cdot\frac{2}{3}\cdot\frac{4}{3}\cdot\frac{3}{4}\cdot\frac{5}{4}\cdot....\cdot\frac{29}{30}\cdot\frac{31}{30}\)

\(=\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{29}{30}\right)\cdot\left(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot....\cdot\frac{31}{30}\right)\)

\(=\frac{1}{30}\cdot\frac{31}{2}\)

\(=\frac{31}{60}\)

b, \(A=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)

Ta có:

\(\frac{3}{15}< \frac{3}{10}=\frac{3}{10}\)

\(\frac{3}{15}< \frac{3}{11}< \frac{3}{10}\)

\(\frac{3}{15}< \frac{3}{12}< \frac{3}{10}\)

\(\frac{3}{15}< \frac{3}{13}< \frac{3}{10}\)

\(\frac{3}{15}< \frac{3}{14}< \frac{3}{10}\)

\(\Rightarrow\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}< \frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}\)

\(\Rightarrow\frac{3\cdot5}{15}< A< \frac{3\cdot5}{10}\)

\(\Rightarrow1< A< \frac{15}{10}=\frac{3}{2}\)

\(\frac{3}{2}< 2\)

\(\Rightarrow1< A< 2\)

c ,Ta có

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{25}\right)+\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}\)

5 tháng 5 2019

thanks!!!vui

25 tháng 3 2018

\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)

\(\Rightarrow\)\(A< 1\) ( đpcm ) 

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

11 tháng 3 2017

\(M=\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+59}\)

\(M=\frac{1}{\frac{3.\left(3+1\right)}{2}}+\frac{1}{\frac{4.\left(4+1\right)}{2}}+\frac{1}{\frac{5.\left(5+1\right)}{2}}+...+\frac{1}{\frac{59.\left(59+1\right)}{2}}\)

\(M=\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+\frac{1}{\frac{5.6}{2}}+...+\frac{1}{\frac{59.60}{2}}\)

\(M=\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{59.60}\)

\(M=2.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{59.60}\right)\)

\(M=2.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{59}-\frac{1}{60}\right)\)

\(M=2.\left(\frac{1}{3}-\frac{1}{60}\right)\)

\(M< 2.\frac{1}{3}\)

\(M< \frac{2}{3}\)

23 tháng 6 2020

\(\frac{4}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)< x< \frac{2}{3}.\left(\frac{-1}{6}+\frac{3}{4}\right)\)

\(\frac{4}{3}.\left(\frac{-1}{3}\right)< x< \frac{2}{3}.\left(\frac{7}{12}\right)\)

\(\frac{-4}{9}< x< \frac{7}{18}\)

\(\frac{-8}{18}< x< \frac{7}{18}\)

mà -8<x<7

⇒ x ϵ \(\left\{-7;-6;-5;-4;....;5;6\right\}\)