\(M=\dfrac{\left(x^2-3x+2\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-4x+4\right)}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2017

Ôi mình nhầm để giải lại:

a)đkxđ: x\(\ne\left\{-1;1;2\right\}\)

M=\(\dfrac{\left(x^2-3x+2\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-4x+4\right)}=\dfrac{\left(x-1\right)\left(x-2\right)\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x-2\right)^2}=\dfrac{x+2}{x+1}\)

b)Với x\(\ne\left\{-1;1;2\right\}\) thì M=\(\dfrac{x+2}{x+1}\)

Để M>0 thì \(\dfrac{x+2}{x+1}\)>0

<=> \(\left\{{}\begin{matrix}x+1>0\\x+2>0\end{matrix}\right.\)hoặc\(\left\{{}\begin{matrix}x+1< 0\\x+2< 0\end{matrix}\right.\)

<=>x>-1 hoặc x<-2

Vậy x>-1 hoặc x<-2 và x khác {1;2} thì M>0

M<0 <=>\(\dfrac{x+2}{x+1}\)<0

<=>\(\left\{{}\begin{matrix}x+1< 0\\x+2>0\end{matrix}\right.hoặc}\left\{{}\begin{matrix}x+1>0\\x+2< 0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x< -1\\x>-2\end{matrix}\right.hoặc}\left\{{}\begin{matrix}x>-1\\x< -2\end{matrix}\right.\)

Vậy -2<x<-1 thì M<0

M=0<=> \(\dfrac{x+2}{x+1}\)=0

=>x+2=0

<=>x=-2(TMĐKXĐ)

Vậy x=-2 thì M=0

M vô nghĩa khi M không xác định <=> x={-1;1;2}

29 tháng 4 2017

\(\dfrac{\left(x^2-3x+2\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-4x+4\right)}\)

\(\dfrac{\left(x^2-x-2x+2\right)\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x^2-2x-2x+4\right)}\)

\(\dfrac{\left[x\left(x-1\right)-2\left(x-1\right)\right]\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left[x\left(x-2\right)-2\left(x-2\right)\right]}\)

\(\dfrac{\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-2\right)}=\dfrac{x+2}{x-1}\)

Bài 1: 

a: ĐKXĐ: \(x\notin\left\{0;2;-2;3\right\}\)

\(A+\left(\dfrac{4x}{x+2}-\dfrac{8x^2}{\left(x+2\right)\left(x-2\right)}\right):\left(\dfrac{x-1}{x\left(x-2\right)}-\dfrac{2}{x}\right)\)

\(=\dfrac{4x^2-8x-8x^2}{\left(x+2\right)\left(x-2\right)}:\dfrac{x-1-2x+4}{x\left(x-2\right)}\)

\(=\dfrac{-4x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x\left(x-2\right)}{-x+3}\)

\(=\dfrac{-4x}{-x+3}=\dfrac{4x}{x-3}\)

b: Để A<0 thi x/x-3<0

=>0<x<3

11 tháng 3 2020

ĐKXĐ:\(x\ne\pm2;x\ne-3;x\ne0\)

\(P=1+\frac{x-3}{x^2+5x+6}\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right]\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left(\frac{2}{x-2}-\frac{x}{x^2-4}-\frac{1}{x+2}\right)\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\cdot\frac{2x+4-x-x+4}{\left(x-2\right)\left(x+2\right)}\)

\(=1+\frac{8\left(x-3\right)}{\left(x+2\right)^2\left(x+3\right)\left(x-2\right)}\)

Đề sai à ??

2 tháng 7 2018

Bài 3

Hỏi đáp Toán

2 tháng 5 2018

khocroikhocroikhocroihiha

2 tháng 5 2018

Câu 1 :

a) Rút gọn P :

\(P=\dfrac{x+1}{3x-x^2}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\left[\dfrac{\left(3+x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{12x^2}{\left(3-x\right)\left(3+x\right)}\right]\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{9+6x+x^2-9+6x-x^2-12x^2}{\left(3-x\right)\left(3+x\right)}\right)\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{12x-12x^2}{\left(3-x\right)\left(x+3\right)}\)

\(P=\dfrac{x+1}{x\left(3-x\right)}.\dfrac{\left(3-x\right)\left(x+3\right)}{12x\left(1-x\right)}\)

\(P=\dfrac{\left(x+1\right)\left(x+3\right)}{12x^2\left(1-x\right)}\)