Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, vì m>n
=> m+7>n+7
b, vì m>n
=> -2m<-2n
=>-2m-8<-2n-8
c, vì m>n
=>m+1>n+1
mà m+3>m+1
=>m+3>n+1
phần d,e,f máy mình cùi nên không hiện ra phép tính. sr nhiều
m>n
a) m+7 và m+7
ta có : m>n
=> m+7 > n+7
b) -2m+8 và -2n+8
ta có : m>n
=> -2m > -2n
=> -2m+8 > -2n+8
c) m+3 và m+1
ta có : 3 >1
=> m+3 > m+1
d) \(\dfrac{1}{2}\) \(\left(m-\dfrac{1}{4}\right)\)và\(\dfrac{1}{2}\)\(\left(n-\dfrac{1}{4}\right)\)
ta có: m > n
=> \(m-\dfrac{1}{4}\) > \(n-\dfrac{1}{4}\)
=>\(\dfrac{1}{2}\left(m-\dfrac{1}{4}\right)\)>\(\dfrac{1}{2}\left(n-\dfrac{1}{4}\right)\)
e) \(\dfrac{4}{5}-6\)m và \(\dfrac{4}{5}-6n\)
ta có : m > n
=> -6m > -6n
=> \(\dfrac{4}{5}-6m>\dfrac{4}{5}-6n\)
f) \(-3\left(m+4\right)+\dfrac{1}{2}\) và \(-3\left(n+4\right)+\dfrac{1}{2}\)
ta có : m > n
=> m=4 > n+4
=> -3(m+4) > -3(m+4)
=>\(-3\left(m+4\right)+\dfrac{1}{2}>-3\left(n+4\right)+\dfrac{1}{2}\)
h)Ta có : \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt\(x^2+7x+11=y\)
\(=>p\left(x\right)=\left(y-1\right)\left(y+1\right)-24=y^2-1-24=y^2-25=\left(y-5\right)\left(y+5\right)\)
Thay \(y=x^2+7x+11\) vào ta có : \(p\left(x\right)=\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(f)m\left(x\right)=x^6+27=\left(x^2+3\right)\left(x^4-3x^2+9\right)\)
e)\(\left(x^2+x\right)^2+4\left(x^2+x\right)-12=\left(x^2+x\right)^2-2\left(x^2+x\right)+6\left(x^2+x\right)-12=\left(x^2+x\right)\left(x^2+x-2\right)+6\left(x^2+x-12\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)=\left(x^2+x+6\right)\left(x^2-x+2x-2\right)=\left(x^2+x+6\right)\left[x\left(x-1\right)+2\left(x-1\right)\right]=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
a: \(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{3}{2}\end{matrix}\right.\)
b: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=4\end{matrix}\right.\)
c: \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\5x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{4}{5}\end{matrix}\right.\)
d: \(\Leftrightarrow\left(x+3\right)\left(x-4\right)=0\)
=>x+3=0 hoặc x-4=0
=>x=-3 hoặc x=4
e: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=4\end{matrix}\right.\)
f: \(\Leftrightarrow\left(2x+3\right)\left(x-4\right)\left(x+4\right)=0\)
hay \(x\in\left\{-\dfrac{3}{2};4;-4\right\}\)
a, \(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{3}{2}\end{matrix}\right.\)
b, \(\Leftrightarrow\left[{}\begin{matrix}x^2-9=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x=4\end{matrix}\right.\)
c, \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\4-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{4}{5}\end{matrix}\right.\)
d, \(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
e, tương tự d
f, \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\x^2-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\pm4\end{matrix}\right.\)
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(đúng\right)\)
b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)
\(\Leftrightarrow4x^3+4y^3\ge\left(x+y\right)^3\Leftrightarrow3x^3+3y^3\ge3x^2y+3xy^2\)
\(\Leftrightarrow3x^2\left(x-y\right)-3y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow3\left(x-y\right)\left(x^2-y^2\right)\ge0\Leftrightarrow3\left(x-y\right)^2\left(x+y\right)\ge0\left(đúng\right)\)
a: Ta có: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
giá trị của : f(0) + f(1) + f(2) + f(3) + f(4) + f(5) + f(6) +f(7) + f(8)
= -3-3-2+1+8+23+54+117+244
= 439
d: Ta có: \(4x\left(2x+3\right)-8x\left(x+4\right)\)
\(=8x^2+12x-8x^2-32x\)
=-20x
e: Ta có: \(2x\left(5x+2\right)+\left(2x-3\right)\left(3x-1\right)\)
\(=10x^2+4x+6x^2-2x-9x+3\)
\(=16x^2-7x+3\)
f: Ta có: \(x\left(x+2\right)^2-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=x^3+4x^2+4x-x^3-3x^2-3x-1+3x^2-3\)
\(=4x^2+x-4\)
m^2+n^2=mn^4+9(M-N)=1^2=ê +ff=(e-f)=0 còn số 2 bên ngoài thì 0+ 2= 2
VÌ M CÓ 3 CẠNH , N CÓ 2 NÊN KẾT LUẬN M-N =1 hai m có 3 n có 2 thì 3-2 =1
các bn biết sao ko e^2=ê ee thì = ê vì mũ 2 mà
f^2 cũng tương tự f^2 thì =ff
e-f= ê-f^2 f^" =2
vì f^2 thì =2^f nha vậy e-f = 0
vậy suy ra
m= 0 ,n=0 e=0,f=2
nha k nha
a hi hi
ảo
cho m2+m2 =mm22
ahihihi