Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = \(\left(m+1\right)\left(m+3\right)\left(m+5\right)\left(m+7\right)+15\)
P = \(\left(m^2+8m+7\right)\left(m^2+8m+15\right)+15\) (*)
Đặt \(m^2+8m+7=a\)
(*) \(\Leftrightarrow a.\left(a+8\right)+15\)
= \(a^2+8a+15\)
= \(\left(a+3\right)\left(a+5\right)\)
= \(\left(m^2+8m+7+3\right)\left(m^2+8m+7+5\right)\)
= \(\left(m^2+8m+10\right)\left(m^2+8m+12\right)\)
= \(\left(m^2+8m+10\right)\left(m+2\right)\left(m+6\right)⋮\left(m+6\right)\) ( đpcm )
Bài này bạn chỉ cần chuyển vế biến đổi thôi là được , mình làm mẫu câu 2) :
\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\)
\(\Leftrightarrow\frac{a^2n+b^2m}{mn}-\frac{\left(a+b\right)^2}{m+n}\ge0\)
\(\Leftrightarrow\frac{\left(m+n\right)\left(a^2n+b^2m\right)-\left(a^2+2ab+b^2\right).mn}{mn\left(m+n\right)}\ge0\)
\(\Leftrightarrow\frac{a^2mn+\left(bm\right)^2+\left(an\right)^2+b^2mn-a^2mn-2abmn-b^2mn}{mn\left(m+n\right)}\ge0\)
\(\Leftrightarrow\frac{\left(bm-an\right)^2}{mn\left(m+n\right)}\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow bm=an\)
Câu 3) áp dụng câu 2) để chứng minh dễ dàng hơn, ghép cặp 2 .