K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

nhớ có lời giải nha.  THANKS BẠN NHIỀU

AH
Akai Haruma
Giáo viên
30 tháng 6

Lời giải:

Nếu $p\vdots 3$ thì do $p$ là snt nên $p=3$

$\Rightarrow p+2=5; p+4=7$ đều là snt (thỏa mãn). 

Khi đó: $p^3+2=3^3+2=29$ là snt (đpcm)

Nếu $p$ chia $3$ dư $1$. Đặt $p=3k+1$ với $k$ tự nhiên.

$\Rightarrow p+2=3k+1+2=3k+3=3(k+1)\vdots 3$. Mà $p+2>3$ với mọi $p$ nguyên tố nên $p+2$ không thể là snt (trái với yêu cầu đề - loại) 

Nếu $p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k$ tự nhiên.

$\Rightarrow p+4=3k+2+4=3k+6=3(k+2)\vdots 3$. Mà $p+4>3$ với mọi $p$ nguyên tố nên $p+4$ không thể là snt (trái với yêu cầu đề - loại) 

Vậy ta có đpcm.

AH
Akai Haruma
Giáo viên
6 tháng 2

Lời giải:

$p>3$ và $p$ nguyên tố nên $p$ lẻ

$\Rightarrow p+1$ chẵn $\Rightarrow p+1\vdots 2(1)$

Mặt khác:

$p>3$ và $p$ nguyên tố nên $p$ không chia hết cho $3$

$\Rightarrow p=3k+1$ hoặc $p=3k+2$ với $k$ tự nhiên.

Nếu $p=3k+1$ thì $2p+1=2(3k+1)+1=3(2k+1)\vdots 3$. Mà $2p+1>3$ nên không thể là số nguyên tố (trái đề bài) 

$\Rightarrow p=3k+2$
Khi đó:

$p+1=3k+3\vdots 3(2)$
Từ $(1); (2)$, mà $(2,3)=1$ nên $p+1\vdots (2.3)$ hay $p+1\vdots 6$

2 tháng 11 2018

a) Gọi d là UCLN ( a,a-b )

=> a chia hết cho d

     a - b chia hết cho d

=> a - a - b chia hết cho d 

=> b chia hết cho d

Mà UCLN( a , b ) = 1

=> d = 1

Vậy b và a - b là 2 số nguyên tố cùng nhau