
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Câu 1:
a) Ta có: m<n
⇔2m<2n(nhân hai vế của bất đẳng thức cho 2)
⇔2m+1<2n+1(cộng hai vế của bất đẳng thức cho 1)(đpcm)
b) Ta có: \(\frac{x-3}{3}< \frac{x-2}{4}\)
\(\Leftrightarrow4\left(x-3\right)< 3\left(x-2\right)\)
\(\Leftrightarrow4x-12< 3x-6\)
\(\Leftrightarrow4x-12-3x+6< 0\)
\(\Leftrightarrow x-6< 0\)
hay x<6
Vậy: S={x|x<6}

a, Ta có: \(m< n\Leftrightarrow4m< 4n\) (nhân cả hai vế với 4)
\(\Leftrightarrow4m+1< 4n+1\) (cộng cả hai vế với 1)
mà 1<5 \(\Leftrightarrow4n+1< 4n+5\)
\(\Rightarrow4m+1< 4n+5\)
b. Ta có: \(m< n\Leftrightarrow-5m>-5n\) (nhân cả hai vế với -5)
\(\Leftrightarrow3-5m>3-5n\) (cộng cả hai vế với 3)
mà 1<3 \(\Leftrightarrow1-5n< 3-5n\)
\(\Rightarrow3-5m>1-5n\)

A/Ta có m<n
=>4m<4n
=>4m-7<4n-7
B/Ta có m<n
=>2m<2n
=>2m+3<2n+3
C/Ta có l3xl=3x khi 3x>=0<=>x>=3
3x=x+7
<=>3x-x=7
<=>2x=7
<=>x=7/2(tm)
Ta lại cól3xl=-3x khi 3x<0<=>x<0
-3x=x+7
<=>-3x-x=7
<=>-4x=7
<=>x=-7/4(tm)
Vậy pt có tập nhiệm S={7/2;-7/4}

Lời giải:
1)
Ta có: \(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)
\(=\frac{x+2}{(x-2)(x+2)}+\frac{x-2}{(x-2)(x+2)}+\frac{x^2+1}{x^2-4}\)
\(=\frac{x+2}{x^2-4}+\frac{x-2}{x^2-4}+\frac{x^2+1}{x^2-4}=\frac{x+2+x-2+x^2+1}{x^2-4}\)
\(=\frac{x^2+2x+1}{x^2-4}=\frac{(x+1)^2}{x^2-4}\)
2) Với mọi \(-2< x< 2\Rightarrow (x-2)(x+2)< 0\Leftrightarrow x^2-4< 0\)
Mà \((x+1)^2>0\forall x\neq 1; -2< x< 2\) nên \(\frac{(x+1)^2}{x^2-4}< 0\)
Tức là biểu thức A luôn nhận giá trị âm. Ta có đpcm.

a, Áp dụng bđt Cauchy ta có
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
b, a(a+2)<(a+1)2
=>a2+2a<a2+2a+1(đúng)

\(A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\)
\(A=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2+1}{\left(x-2\right)\left(x+2\right)}\)
\(A=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)
\(A=\dfrac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)
\(A=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)
Ta có: -2 < x < 2
=> x thuộc { -1 ; 0 ; 1 }
Mà x khác -1 nên x = 0 ; x = 1
Với x = 0 thì \(A=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(0+1\right)^2}{\left(0-2\right)\left(0+2\right)}=\dfrac{1}{-4}\)
=> A có giá trị âm
Với x = 1 thì \(A=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(1+1\right)^2}{\left(1-2\right)\left(1+2\right)}=\dfrac{4}{-3}\)
=> A có giá trị âm
Vậy với -2 < x < 2 ; x khác -1 thì A có giá trị âm

Bài 1:
\(x-x^2-1=-x^2+x-1\)
\(=-x^2+x-\frac{1}{4}-\frac{3}{4}\)
\(=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\)
Xảy ra khi \(x=\frac{1}{2}\)
Bài 2:
\(\frac{2n^2-n+2}{2n+1}=\frac{n\left(2n+1\right)-2n+2}{2n+1}=\frac{n\left(2n+1\right)}{2n+1}-\frac{2n-2}{2n+1}\)
\(=n-\frac{2n+1-3}{2n+1}=n-\frac{2n+1}{2n+1}-\frac{3}{2n+1}\)\(=n-1-\frac{3}{2n+1}\)
Để \(2n^2-n+2\) chia hết \(2n+1\)
Thì 3 chia hết \(2n+1\)\(\Rightarrow2n+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow n=\left\{....\right\}\) tự lm nốt
Ta có : 2n2 - n + 2 chia hêt cho 2n + 1
<=> 2n2 + n - 2n + 2 chia hết cho 2n + 1
<=> n(2n + 1) - 2n - 1 + 3 chia hết cho 2n + 1
<=> n(2n + 1) - (2n + 1) + 3 chia hết cho 2n + 1
<=> (2n + 1)(n - 1) + 3 chia hết cho 2n + 1
=> 3 chia hết cho 2n + 1
=> 2n + 1 thuộc Ư(3) = {-3;-1;1;3}
Ta có bảng :
2n + 1 | -3 | -1 | 1 | 3 |
2n | -4 | -2 | 0 | 2 |
n | -2 | -1 | 0 | 1 |
Ta có: m < n ⇒ 2m < 2n ⇒ 2m + 1 < 2n + 1