K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:

a) Ta có: m<n

⇔2m<2n(nhân hai vế của bất đẳng thức cho 2)

⇔2m+1<2n+1(cộng hai vế của bất đẳng thức cho 1)(đpcm)

b) Ta có: \(\frac{x-3}{3}< \frac{x-2}{4}\)

\(\Leftrightarrow4\left(x-3\right)< 3\left(x-2\right)\)

\(\Leftrightarrow4x-12< 3x-6\)

\(\Leftrightarrow4x-12-3x+6< 0\)

\(\Leftrightarrow x-6< 0\)

hay x<6

Vậy: S={x|x<6}

5 tháng 5 2017

a, Ta có: \(m< n\Leftrightarrow4m< 4n\) (nhân cả hai vế với 4)

\(\Leftrightarrow4m+1< 4n+1\) (cộng cả hai vế với 1)

mà 1<5 \(\Leftrightarrow4n+1< 4n+5\)

\(\Rightarrow4m+1< 4n+5\)

b. Ta có: \(m< n\Leftrightarrow-5m>-5n\) (nhân cả hai vế với -5)

\(\Leftrightarrow3-5m>3-5n\) (cộng cả hai vế với 3)

mà 1<3 \(\Leftrightarrow1-5n< 3-5n\)

\(\Rightarrow3-5m>1-5n\)

29 tháng 4 2015

TAO MOI HOC LOP 4A LAM SAO MA GIAI DUOC

29 tháng 4 2015

A/Ta có m<n

=>4m<4n

=>4m-7<4n-7

B/Ta có m<n

=>2m<2n

=>2m+3<2n+3

C/Ta có l3xl=3x khi 3x>=0<=>x>=3

3x=x+7

<=>3x-x=7

<=>2x=7

<=>x=7/2(tm)

Ta lại cól3xl=-3x khi 3x<0<=>x<0

-3x=x+7

<=>-3x-x=7

<=>-4x=7

<=>x=-7/4(tm)

Vậy pt có tập nhiệm S={7/2;-7/4}

20 tháng 3 2018

1 < 2 \(\Rightarrow\)1+m < 2+m

-2 < 3 \(\Rightarrow\)m-2 < 3+m

AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Lời giải:

1)

Ta có: \(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x+2}{(x-2)(x+2)}+\frac{x-2}{(x-2)(x+2)}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x+2}{x^2-4}+\frac{x-2}{x^2-4}+\frac{x^2+1}{x^2-4}=\frac{x+2+x-2+x^2+1}{x^2-4}\)

\(=\frac{x^2+2x+1}{x^2-4}=\frac{(x+1)^2}{x^2-4}\)

2) Với mọi \(-2< x< 2\Rightarrow (x-2)(x+2)< 0\Leftrightarrow x^2-4< 0\)

\((x+1)^2>0\forall x\neq 1; -2< x< 2\) nên \(\frac{(x+1)^2}{x^2-4}< 0\)

Tức là biểu thức A luôn nhận giá trị âm. Ta có đpcm.

a, Áp dụng bđt Cauchy ta có

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

b, a(a+2)<(a+1)2

=>a2+2a<a2+2a+1(đúng)

23 tháng 12 2018

\(A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\)

\(A=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(A=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(A=\dfrac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)

\(A=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)

Ta có: -2 < x < 2

=> x thuộc { -1 ; 0 ; 1 }

Mà x khác -1 nên x = 0 ; x = 1

Với x = 0 thì \(A=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(0+1\right)^2}{\left(0-2\right)\left(0+2\right)}=\dfrac{1}{-4}\)

=> A có giá trị âm

Với x = 1 thì \(A=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(1+1\right)^2}{\left(1-2\right)\left(1+2\right)}=\dfrac{4}{-3}\)

=> A có giá trị âm

Vậy với -2 < x < 2 ; x khác -1 thì A có giá trị âm

3 tháng 7 2017

Bài 1:

\(x-x^2-1=-x^2+x-1\)

\(=-x^2+x-\frac{1}{4}-\frac{3}{4}\)

\(=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}\)

\(=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\)

Xảy ra khi \(x=\frac{1}{2}\)

Bài 2:

\(\frac{2n^2-n+2}{2n+1}=\frac{n\left(2n+1\right)-2n+2}{2n+1}=\frac{n\left(2n+1\right)}{2n+1}-\frac{2n-2}{2n+1}\)

\(=n-\frac{2n+1-3}{2n+1}=n-\frac{2n+1}{2n+1}-\frac{3}{2n+1}\)\(=n-1-\frac{3}{2n+1}\)

Để \(2n^2-n+2\) chia hết \(2n+1\)

Thì 3 chia hết \(2n+1\)\(\Rightarrow2n+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow n=\left\{....\right\}\) tự lm nốt

3 tháng 7 2017

Ta có : 2n- n  + 2 chia hêt cho 2n + 1

<=> 2n2 + n - 2n + 2 chia hết cho 2n + 1

<=> n(2n + 1) - 2n - 1 + 3  chia hết cho 2n + 1

<=> n(2n + 1) - (2n + 1) + 3 chia hết cho 2n + 1

<=> (2n + 1)(n - 1) + 3 chia hết cho 2n + 1

=> 3 chia hết cho 2n + 1

=> 2n + 1 thuộc Ư(3) = {-3;-1;1;3}

Ta có bảng : 

2n + 1-3-113
2n-4-202
n-2-101