\(A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\) (với
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2018

\(A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\)

\(A=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(A=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(A=\dfrac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)

\(A=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)

Ta có: -2 < x < 2

=> x thuộc { -1 ; 0 ; 1 }

Mà x khác -1 nên x = 0 ; x = 1

Với x = 0 thì \(A=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(0+1\right)^2}{\left(0-2\right)\left(0+2\right)}=\dfrac{1}{-4}\)

=> A có giá trị âm

Với x = 1 thì \(A=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(1+1\right)^2}{\left(1-2\right)\left(1+2\right)}=\dfrac{4}{-3}\)

=> A có giá trị âm

Vậy với -2 < x < 2 ; x khác -1 thì A có giá trị âm

29 tháng 12 2019

\(A=\frac{1}{x+2}+\frac{1}{x-2}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)

Với \(\forall x\in\left[-2;2\right]\) thì \(\left(x-2\right)\left(x+2\right)< 0\Rightarrow\frac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}< 0\Rightarrow A< 0\)

AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Lời giải:

1)

Ta có: \(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x+2}{(x-2)(x+2)}+\frac{x-2}{(x-2)(x+2)}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x+2}{x^2-4}+\frac{x-2}{x^2-4}+\frac{x^2+1}{x^2-4}=\frac{x+2+x-2+x^2+1}{x^2-4}\)

\(=\frac{x^2+2x+1}{x^2-4}=\frac{(x+1)^2}{x^2-4}\)

2) Với mọi \(-2< x< 2\Rightarrow (x-2)(x+2)< 0\Leftrightarrow x^2-4< 0\)

\((x+1)^2>0\forall x\neq 1; -2< x< 2\) nên \(\frac{(x+1)^2}{x^2-4}< 0\)

Tức là biểu thức A luôn nhận giá trị âm. Ta có đpcm.

2 tháng 2 2020

\(a,Đkxđ:x\ne\pm2\)

\(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x+1\right)^2}{x^2-4}\)

b, Ta có: \(\left(x-2\right)\left(x+2\right)< 0;\forall-2< 2< 2;x\ne-1\)

Mà: \(\left(x+1\right)^2>0\left(\forall x\ne-1\right)\)

\(\Rightarrow\frac{\left(x+1\right)^2}{\left(x+2\right)\left(x-2\right)}< 0;\forall-2< x< 2;x\ne-1\)

Vậy ............

11 tháng 8 2016

\(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}=\)\(\frac{x+2}{x^2-4}+\frac{x-2}{x^2-4}+\frac{x^2+1}{x^2-4}=\)\(\frac{x+2+x-2+x^2+1}{x^2-4}=\)

=(x^2+2x+1)/(x-2)(x+2)=(x+1)^2/(x-2)(x+2)

Vì x>-2 và x<2 nên (x-2)<0, x+2>0, \(\left(x+1\right)^2>0\). Suy ra A<0

1: Sửa đê: \(A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\)

\(=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)

2: -2<x<2 thì (x-2)(x+2)<0

=>A<0

21 tháng 6 2017

ĐKXĐ:

\(x\ne\pm2\)

\(\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}=\dfrac{x+2}{x^2-4}+\dfrac{x-2}{x^2-4}+\dfrac{x^2+1}{x^2-4}=\dfrac{x+2+x-2+x^2+1}{x^2-4}=\dfrac{x^2+2x+1}{x^2-4}=\dfrac{\left(x+1\right)^2}{x^2-4}\)b, Để B = 2 hay \(\dfrac{\left(x+1\right)^2}{x^2-4}=2\Rightarrow x^2+2x+1=2\left(x^2-4\right)\Leftrightarrow x^2+2x+1-2x^2+8=0\Leftrightarrow2x-x^2+9=0\Leftrightarrow-\left(x^2-2x+1\right)+10=0\Rightarrow-\left(x-1\right)^2=-10\Rightarrow\left(x-1\right)^2=10\Rightarrow\left[{}\begin{matrix}x-1=\sqrt{10}\\x-1=-\sqrt{10}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{10}+1\\x=-\sqrt{10}+1\end{matrix}\right.\)