\(\left\{0;7;14;21;28;35;42\right\}\)

Tìm a; b \(\in...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2018

M = {0;7;14;21;28;35;42}

a.Ta có : a/b đạt giá trị lớn nhất khi a đạt giá trị lớn nhất và b đạt giá trị bé nhất (a,b E N*)=> a = 42;b=7

13 tháng 5 2015

a) \(\frac{a}{b}\) có GTLN \(\Leftrightarrow\) a lớn nhất và b nhỏ nhất.

Mà b \(\ne\) 0 vì b là mẫu của phân số nên : a = 42 ; b= 7.

Vậy \(\frac{a}{b}\) có GTLN là \(\frac{42}{7}=6\)

b) \(\frac{a-b}{a+b}\) dương có GTNN \(\Leftrightarrow\) a - b nhỏ nhất và a + b lớn nhất

\(\Leftrightarrow\) a -b = 7 (= 7 - 0)  và a + b = 77 (= 42 + 35) 

\(\Leftrightarrow\) a = 42 và b = 35

Vậy \(\frac{a-b}{a+b}\) dương có GTNN là \(\frac{7}{77}=\frac{1}{11}\)

       Online_Maths chọn câu trả lời này đi !

1 tháng 8 2016

trong bài toán này ta thấy hiệu của a và b là số dương nhỏ nhất trong tập hợp khác 0 là 7.tất nhiên a+b cũng là số dương lớn nhất nên kết luận hai số có tổng lớn nhất trong tập hợp là 35 và 42 vị a-b=7 nên a>b. so a=42,b=35

29 tháng 7 2018

Bài 3: A=2018-|x+2019|. Vì |x+2019|\(\ge\)0 nên -|x+2019|\(\le\)0=>2018-|x+2019|\(\le\) 2. Vậy A có GTLN = 2 khi x+2019=0 hay x=-2019. B=-10-\(\left|2x-\dfrac{1}{1009}\right|\). Vì \(\left|2x-\dfrac{1}{1009}\right|\ge0\Rightarrow-\left|2x-\dfrac{1}{1009}\right|\le0\Rightarrow-10-\left|2x-\dfrac{1}{1009}\right|\le-10\). Vậy B có GTLN = -10 khi 2x-\(\dfrac{1}{1009}=0\) => \(2x=\dfrac{1}{1009}\Rightarrow x=\dfrac{1}{1009}:2=\dfrac{1}{2018}\)

29 tháng 7 2018

Bài 2: A=\(\left|5x+1\right|-\dfrac{3}{8}\). Vì \(\left|5x+1\right|\ge0\Rightarrow\left|5x+1\right|-\dfrac{3}{8}\ge\dfrac{-3}{8}\). Vậy A có GTNN = \(\dfrac{-3}{8}\) khi 5x+1= 0=> 5x= -1=> x = \(\dfrac{-1}{5}\). B=\(\left|2-\dfrac{1}{6}x\right|+0,25\) , vì \(\left|2-\dfrac{1}{6}x\right|\ge0\Rightarrow\left|2-\dfrac{1}{6}x\right|+0,25\ge0,25\) . Vậy B có GTNN = 0,25 khi \(2-\dfrac{1}{6}x=0\Rightarrow\dfrac{x}{6}=2\Rightarrow x=2.6=12\)

Bài 1: 

a: \(\Leftrightarrow\left|x+\dfrac{4}{15}\right|=-2.15+3.75=\dfrac{8}{5}\)

=>x+4/15=8/5 hoặc x+4/15=-8/5

=>x=4/3 hoặc x=-28/15

b: \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{5}{3}x=-\dfrac{1}{6}\\\dfrac{5}{3}x=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{6}:\dfrac{5}{3}=\dfrac{-3}{30}=\dfrac{-1}{10}\\x=\dfrac{1}{10}\end{matrix}\right.\)

c: \(\Leftrightarrow\left|x-1\right|-1=1\)

=>|x-1|=2

=>x-1=2 hoặc x-1=-2

=>x=3 hoặc x=-1

Bài 2: 

b: \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{9}{25}\)

Bài 3: 

a: \(A=\left|x+\dfrac{15}{19}\right|-1>=-1\)

Dấu '=' xảy ra khi x=-15/19

b: \(\left|x-\dfrac{4}{7}\right|+\dfrac{1}{2}>=\dfrac{1}{2}\)

Dấu '=' xảy ra khi x=4/7

 

14 tháng 8 2018

a/ Vì: \(\left(2x+\dfrac{1}{3}\right)^4\ge0\) với mọi x

=> \(\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)

dấu ''='' xảy ra khi :

\(2x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{6}\)

Vậy MinA = -1 <=> \(x=-\dfrac{1}{6}\)

b/ Vì: \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\ge0\Rightarrow-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0\)

=> \(-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)

dấu ''='' xảy ra khi :

\(-\dfrac{4}{9}x-\dfrac{2}{15}=0\Leftrightarrow x=-\dfrac{3}{10}\)

vậy MaxB = 3 khi \(x=-\dfrac{3}{10}\)

7 tháng 8 2017

\(A=\frac{4n+1}{2n+3}=\frac{4n+6}{2n+3}-\frac{5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}=2-\frac{5}{2n+3}\)

a) A nguyên khi \(\frac{5}{2n+3}\) nguyên <=> 5 chia hết cho 2n+3 

<=>\(2n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

<=>\(2n\in\left\{-8;-4;-2;2\right\}\)

<=>\(n\in\left\{-4;-2;-1;1\right\}\)

b) A lớn nhất khi \(2-\frac{5}{2n+3}\)lớn nhất <=>\(\frac{5}{2n+3}\)  nhỏ nhất <=> 2n+3 lớn nhất < 0 mà n nguyên

<=> 2n+3=-1 <=> n=-2

\(maxA=2-\frac{5}{2n+3}=2-\frac{5}{2\left(-2\right)+3}=2-\frac{5}{-1}=2-\left(-5\right)=7\) tại n=-2

phần giá trị nhỏ nhất bạn làm nốt