Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4:
a: Xét ΔMIN và ΔMIP có
MI chung
IN=IP
MN=MP
Do đó: ΔMIN=ΔMIP
a: Xét ΔMBA và ΔMCE có
MB=MC
góc BMA=góc CME
MA=ME
=>ΔMBA=ΔMCE
b: AC>AB=CE
c: góc BAM=góc ECA>góc MAC
d: Xét tứ giác ABEC có
AB//EC
AB=EC
=>ABEC là hbh
=>BE//AC và BE=AC
a) Xét tứ giác ACDB có:
M là trung điểm của BC (gt).
M là trung điểm của AD (MD = MA)
=> Tứ giác ACDB là hình bình hành (dhnb).
=> AB = DC (Tính chất hình bình hành).
b) Tứ giác ACDB là hình bình hành (cmt).
=> BD // AC (Tính chất hình bình hành).
c) Xét tam giác ABC và tam giác DCB có:
+ BC chung.
+ AB = DC (Tứ giác ACDB là hình bình hành).
+ AC = DB (Tứ giác ACDB là hình bình hành).
=> Tam giác ABC = Tam giác DCB (c - c - c).
bạn ơi chứng minh tam giác ABM=tam giác ACM rồi sao lại còn chứng minh tiếp
Biết :MA=MB chứ , mik nhầm =<