K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

k chia hết cho 2 nên k có dạng : \(2k\left(k\in Z\right)\)

Ta có : \(\left(m^3+20m\right)=\left[\left(2k\right)^3+20.2k\right]=8k^3+40k=8k\left(k^2+5\right)\)

\(k⋮2\Rightarrow k\left(k^2+5\right)⋮2\)

\(k⋮̸2\)thì : \(k\equiv1\left(mod2\right)\Leftrightarrow k^2\equiv1\left(mod2\right)\)

\(5\equiv-1\left(mod2\right)\Rightarrow k^2+5\equiv1+\left(-1\right)=0\left(mod2\right)\Rightarrow k\left(k^2+5\right)⋮2\)

\(\Rightarrow8k\left(k^2+5\right)⋮16\left(\cdot\right)\)

Xét : +> k chia hết cho 3 : \(k\left(k^2+5\right)⋮3\)

+> k chia 3 dư 1 : \(k\equiv1\left(mod3\right)\Leftrightarrow k^2\equiv1\left(mod3\right);5\equiv-1\left(mod3\right)\Rightarrow k^2+5\equiv1+\left(-1\right)=0\left(mod5\right)⋮3\)

+> k chia 3 dư 2 : \(k\equiv-1\left(mod3\right)\Leftrightarrow k^2\equiv\left(-1\right)\left(-1\right)=1\left(mod3\right);5\equiv-1\left(mod3\right)\Rightarrow k^2+5⋮3\)

\(\Rightarrow k\left(k^2+5\right)⋮3\left(\cdot\cdot\right)\)Mà 16 và 3 nguyên tố cùng nhau từ \(\left(\cdot\right);\left(\cdot\cdot\right)\Rightarrow8k\left(k^2-5\right)⋮16.3=48\left(đpcm\right).\)

13 tháng 9 2017

  m = 2k thì 
(2k)^3 + 20*2k = 8k^3 + 40k = 8k(k^2 + 5) 
Cần chứng minh k(k^2 + 5) chia hết cho 6 là xong. 
+ nếu k chẵn => k(k^2 + 5) chia hết cho 2 
+ nếu k lẻ => k^2 lẻ => k^2 + 5 chẵn => k(k^2 + 5) chia hết cho 2 
Vậy k(k^2 + 5) chia hết cho 2 
+ nếu k chia hết cho 3 => k(k^2 + 5) chia hết cho 3 
+ nếu k chia 3 dư 1 => k^2 + 5 = (3l + 1)^2 + 5 = 9l^2 + 6l + 6 chia hết cho 3 
+ nếu k chia 3 dư 2 => k^2 + 5 = (3l + 2)^2 + 5 = 9l^2 + 12l + 9 chia hết cho 3 
Vậy k(k^2 + 5) chia hết cho 3 
=>dpcm

14 tháng 5 2015

Gọi a là đại diện số lẻ.Có m=2a vì m là số chẵn
=>m^3 +20m= (2a)^3+20*2a=8a^3+40a

Xét 8a^3+40a
1-8a^3+40a
=8a^3 -2a+42a
=(2a+1)(2a-1)2a+42a
(2a+1)(2a-1)2a chia hết cho 3(vì là tích 3 số nguyên liên tiếp)(1)
42a chia hết cho 3(2)
Từ (1)(2)=>(2a+1)(2a-1)2a+42a chia hết cho 3
=>8a^3+40a chia hết cho 3(3)
2-8a^3 + 40a
=8*(a^3+5)
=> 8a^3 + 40a chia hết cho 8(4)
Có a là số lẻ suy ra a^3 là số lẻ,suy ra a^3+5 là tổng 2 số lẻ nên là số chẵn
=>a^3+5 chia hết cho 2=>8a^3 + 40a chia hết cho 2(5)
Từ (3)(4)(5)=>8a^3+40a chia hết cho 48
=>m^3 +20m chia hết cho 48 với m là số chẵn

đúng nhé

14 tháng 5 2015

Mình nghĩ 2k+1 là đại diện của số lẻ chứ !

17 tháng 9 2017

Ta có :

\(m⋮2\Leftrightarrow m=2k\left(k\in N\right)\)

\(\Leftrightarrow m^3+20m=\left(2k\right)^3+20.2k\)

\(=8k^3+40k\)

\(=8k\left(k^2+5\right)\)

Cần chứng minh \(k\left(k^2+5\right)⋮6\)là xong.
+ nếu \(k\) chẵn \(\Leftrightarrow k\left(k^2+5\right)⋮2\)
+ nếu \(k\) lẻ\(\Leftrightarrow k^2\) lẻ \(\Leftrightarrow k^2+5\) chẵn \(\Leftrightarrow k\left(k^2+5\right)⋮2\)
Vậy \(k\left(k^2+5\right)⋮2\)
+ nếu \(k⋮3\) \(\Leftrightarrow k\left(k^2+5\right)⋮3\)
+ nếu \(k=3k_1+1\)\(\Leftrightarrow k^2+5=\left(3k_1+1\right)^2+5=9k_1+6k+6⋮3\)
+ nếu \(k=3k_2+2\) \(\Leftrightarrow k^2+5=\left(3k_2+2\right)^2+5=9k^2_2+12k_2+9⋮3\)
Vậy \(k\left(k^2+5\right)⋮3\)
=>dpcm

17 tháng 9 2017

cảm ơn nha bạn

16 tháng 4 2016

**** m chia hết cho 3 => m^2 chia hết cho 3 ( m^2 = m.m ) 
Tt: n^2 chia hết cho 3 

=> m^2 + n^2 chia hết cho 3 

**** định lí đảo 
m^2 + n^2 chia hết cho 3 

Xét: a chia 3 có 3 trườg hợp số dư: 0;1;2 => a^2 có 2 trườg hợp số dư là 0;1 < cm: đặt a = 3k + x với x là các trườg hợp số dư. sau đó tìm được số dư khi bình phương a > 


=> m^2 và n^2 cũng có các khả năng số dư đó khi chia cho 3 

Xét các trườg hợp: 

m^2 và n^2 chia 3 cùng dư 1 => m^2 + n^2 chia 3 dư 2 => loại 
m^2 và n^2 1 số chia 3 dư 0 và 1 số chia 3 dư 1 => m^2 + n^2 chia 3 dư 1 => loại 

=> m^2 và n^2 cùng chia hết cho 3 

hay m và n cùng chia hết cho 3

14 tháng 4 2016

♥ ĐK cần: (ký hiệu | nghĩa là "chia hết cho") 
Nếu m và n đều | 3 thì m² , n² và m.n đều | 9 nên ²+n²+mn sẽ | 9 
♥ĐK đủ: Nếu m²+n²+mn | 9 ta sẽ cm m,n | 3 
Ta có: m²+n²+mn =(m-n)² +3mn 
3mn | 9 <=> mn | 3 (1) 
mà (m-n)² | 9 nên m-n | 3 (2) 
Kết hợp (1) và (2) suy ra m,n đều | 3 
1/Nhận xét A là số nguyên. 
Bạn Linh tính đúng nhưng kết quả hơi nhầm chút, phải là: A = (-7^2008 -7)/8 = -7(7^2007+1)/8 
Ta sẽ cm 7^2007 +1 | 43 
7^2007 + 1 = (7³)^669 +1 = 343^669 +1 = (343+1)(343^668 - ....+1) 
= 344.(343^668 - ....+1) 
Mà 344 | 43 nên 7^2007 +1 |43 (đpcm)

Nhớ thanks nha!

9 tháng 9 2017

a) = 53. 52- 53 .5+ 53

= 53 .( 52- 5+1)

=53. 21 mà 21 chia hết cho 7

=) 55 - 54 + 53 chia hết cho 7

b)= 74.72 + 74.7 -74

= 74( 72+ 7-1)

=74. 55 mà 55chia hết cho 11

=)7^6 + 75-74 chia hết cho 11

c)=( 2.3.4)2.27 . (2.27)2.3.4 . ( 2)2.5

= ( 6. 4) 6.9 . ( 6. 9 ) 6.4. 210

= 246. 249. 546.549 . 210

=12966 . 12964.210mà 1296 chia hết cho 72 ( vì 1296 : 72 bằng 18)

=)24^54. 54^24 + 2^10 chia hết cho 72 ^53

26 tháng 9 2017

ê ko tick à