K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 2 2020

Do quá làm biếng dùng Hoocne tách nhân tử nên chúng ta sẽ sử dụng L'Hopital:

\(\lim\limits_{x\rightarrow1}\frac{4x^6-5x^5+x}{x^2-2x+1}=\lim\limits_{x\rightarrow1}\frac{24x^5-25x^4+1}{2x-2}=\lim\limits_{x\rightarrow1}\frac{120x^4-100x^3}{2}=\frac{120-100}{2}=10\)

\(\lim\limits_{x\rightarrow-3}\frac{x^4-6x^2-27}{x^3+3x^2+x+3}=\lim\limits_{x\rightarrow-3}\frac{4x^3-12x}{3x^2+6x+1}=\frac{-36}{5}\)

\(\lim\limits_{x\rightarrow-2}\frac{2x^3+x^2+12}{-x^2-6x-8}=\lim\limits_{x\rightarrow-2}\frac{6x^2+2x}{-2x-6}=-10\)

\(\lim\limits_{x\rightarrow-2}\frac{-2x^3+x-14}{-2x^3-x^2-12}=\lim\limits_{x\rightarrow-2}\frac{-6x^2+1}{-6x^2-2x}=\frac{23}{20}\)

Con cuối ko phải tích phân dạng vô định \(\frac{0}{0}\) bạn cứ thế thẳng -2 vào là được

1. Cho hs y=f(x) có đạo hàm thỏa mãn f'(6)=2. Tính giá trị biểu thức lim \(_{x-6}\)\(\dfrac{f\left(x\right)-f\left(6\right)}{x-6}\)2. Gọi d là tiếp tuyến của hs y=\(\dfrac{x-1}{x+2}\) tại điểm có hoàng độ bằng -3. Khi đó d tạo với 2 trục tọa độ 1 tam giác có diện tích là bao nhiêu?3. Cho lim \(_{x-2}\)\(\dfrac{\sqrt{3x+3}-m}{x-2}\)=\(\dfrac{a}{b}\)với m là số thực và \(\dfrac{a}{b}\)tối giản. Tính 2a-b4. Cho hàm số y=f(x) xác định và có...
Đọc tiếp

1. Cho hs y=f(x) có đạo hàm thỏa mãn f'(6)=2. Tính giá trị biểu thức lim \(_{x->6}\)\(\dfrac{f\left(x\right)-f\left(6\right)}{x-6}\)

2. Gọi d là tiếp tuyến của hs y=\(\dfrac{x-1}{x+2}\) tại điểm có hoàng độ bằng -3. Khi đó d tạo với 2 trục tọa độ 1 tam giác có diện tích là bao nhiêu?

3. Cho lim \(_{x->2}\)\(\dfrac{\sqrt{3x+3}-m}{x-2}\)=\(\dfrac{a}{b}\)với m là số thực và \(\dfrac{a}{b}\)tối giản. Tính 2a-b

4. Cho hàm số y=f(x) xác định và có đạo hàm trên tập số thực. Biết f'(1)=5 và f(1)=6. Tìm giới hạn lim \(_{x->1}\)\(\dfrac{f^2\left(x\right)-f\left(x\right)-30}{\sqrt{x}-1}\)

5. Cho tam giác ABC có 2 trung tuyến kẻ từ A đến B vuông góc với nhau. Khi đó tỉ số \(\dfrac{AC+BC}{AB}\)đạt giá trị lớn nhất bằng bao nhiêu(làm tròn đến hàng phần trăm)

6. Cho tứ diện ABCD có (ACD) vuông góc (BCD), AC=AD=BC=BD=a và CD=2x. Gọi I và J lần lượt là trung điểm của AB và CD. Với giá trị nào của x thì (ABC) vuông góc với (ABD)?

1
11 tháng 4 2021

1/ L'Hospital:

\(=\lim\limits_{x\rightarrow6}f'\left(x\right)=f'\left(6\right)=2\)

3/ \(=\lim\limits_{x\rightarrow2}\dfrac{\dfrac{3}{2\sqrt{3x+3}}}{1}=\dfrac{1}{2}\Rightarrow2a-b=0\)

4/ \(=\lim\limits_{x\rightarrow1}\dfrac{2f\left(x\right).f'\left(x\right)-f'\left(x\right)}{\dfrac{1}{2\sqrt{x}}}=\dfrac{2.6.5-5}{\dfrac{1}{2}}=110\)

2/ \(x_0=-3\Rightarrow y_0=\dfrac{-3-1}{-3+2}=\dfrac{-4}{-1}=4\)

\(y'=\dfrac{\left(x-1\right)'\left(x+2\right)-\left(x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}=\dfrac{x+2-x+1}{\left(x+2\right)^2}=\dfrac{3}{\left(x+2\right)^2}\)

\(\Rightarrow y'\left(-3\right)=3\)

\(\Rightarrow pttt:y=3\left(x+3\right)+4=3x+13\)

\(x=0\Rightarrow y=13;y=0\Rightarrow x=-\dfrac{13}{3}\)

\(\Rightarrow S=\dfrac{1}{2}.\left|x\right|\left|y\right|=\dfrac{1}{2}.\dfrac{13}{3}.13=\dfrac{169}{6}\left(dvdt\right)\)

P/s: Câu 5,6 bỏ qua nhé, toi ngu hình học :b

11 tháng 4 2021

 cảm ơn bạn nhé =))

10 tháng 11 2023

a: \(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{2x+10}-4}{3x-9}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{2x+10-16}{3x-9}\cdot\dfrac{1}{\sqrt{2x+10}+4}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{2\left(x-3\right)}{3\left(x-3\right)\cdot\left(\sqrt{2x+10}+4\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{2}{3\left(\sqrt{2x+10}+4\right)}\)

\(=\dfrac{2}{3\cdot\sqrt{6+10}+3\cdot4}=\dfrac{2}{3\cdot4+3\cdot4}=\dfrac{2}{24}=\dfrac{1}{12}\)

b: \(\lim\limits_{x\rightarrow7}\dfrac{\sqrt{4x+8}-6}{x^2-9x+14}\)

\(=\lim\limits_{x\rightarrow7}\dfrac{4x+8-36}{\sqrt{4x+8}+6}\cdot\dfrac{1}{\left(x-2\right)\left(x-7\right)}\)

\(=\lim\limits_{x\rightarrow7}\dfrac{4x-28}{\left(\sqrt{4x+8}+6\right)\cdot\left(x-2\right)\left(x-7\right)}\)

\(=\lim\limits_{x\rightarrow7}\dfrac{4}{\left(\sqrt{4x+8}+6\right)\left(x-2\right)}\)

\(=\dfrac{4}{\left(\sqrt{4\cdot7+8}+6\right)\left(7-2\right)}\)

\(=\dfrac{4}{5\cdot12}=\dfrac{4}{60}=\dfrac{1}{15}\)

c: \(\lim\limits_{x\rightarrow5}\dfrac{x^2-8x+15}{2x^2-9x-5}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{\left(x-3\right)\left(x-5\right)}{2x^2-10x+x-5}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{\left(x-3\right)\left(x-5\right)}{\left(x-5\right)\left(2x+1\right)}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{x-3}{2x+1}=\dfrac{5-3}{2\cdot5+1}=\dfrac{2}{11}\)

10 tháng 11 2023

a: \(\lim\limits_{x\rightarrow3}\dfrac{x^2-9}{x^2-5x+6}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x-2\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{x+3}{x-2}=\dfrac{3+3}{3-2}=\dfrac{6}{1}=6\)

b: \(\lim\limits_{x\rightarrow5}\dfrac{x^2-5x}{x-5}=\lim\limits_{x\rightarrow5}\dfrac{x\left(x-5\right)}{x-5}=\lim\limits_{x\rightarrow5}x=5\)

c: \(\lim\limits_{x\rightarrow-3}\dfrac{x^2-3x}{2x^2+9x+9}\)

\(=\lim\limits_{x\rightarrow-3}\dfrac{x\left(x-3\right)}{2x^2+6x+3x+9}\)

\(=\lim\limits_{x\rightarrow-3}\dfrac{\left(-3\right)\left(-3-3\right)}{\left(-3+3\right)\left(2\cdot\left(-3\right)+3\right)}\)

\(=\lim\limits_{x\rightarrow-3}\dfrac{18}{0\cdot\left(-3\right)}=-\infty\)

10 tháng 11 2023

a: \(\lim\limits_{x\rightarrow-2}\dfrac{4-x^2}{2x^2+7x+6}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(2-x\right)\left(2+x\right)}{2x^2+4x+3x+6}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(2-x\right)\left(x+2\right)}{\left(x+2\right)\left(2x+3\right)}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{2-x}{2x+3}=\dfrac{2-\left(-2\right)}{2\cdot\left(-2\right)+3}=\dfrac{4}{-4+3}=-4\)

b: \(\lim\limits_{x\rightarrow4}\dfrac{2x^2-13x+20}{x^3+64}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{2x^2-8x-5x+20}{\left(x+4\right)\left(x^2-4x+16\right)}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{\left(x-4\right)\left(2x-5\right)}{x^3+64}\)

\(=\dfrac{\left(4-4\right)\left(2\cdot4-5\right)}{4^3+64}=0\)

c: \(\lim\limits_{x\rightarrow-1}\dfrac{2x^2+8x+6}{-2x^2+7x+9}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{2x^2+2x+6x+6}{-2x^2-2x+9x+9}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(2x+6\right)}{-2x\left(x+1\right)+9\left(x+1\right)}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(2x+6\right)}{\left(x+1\right)\left(-2x+9\right)}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{2x+6}{-2x+9}=\dfrac{2\cdot\left(-1\right)+6}{-2\cdot\left(-1\right)+9}\)

\(=\dfrac{4}{11}\)

18 tháng 2 2021

a/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^2+1-x^2}{\sqrt{x^2+1}-x}+\lim\limits_{x\rightarrow-\infty}\dfrac{3x^3-1-x^3}{\sqrt[3]{\left(3x^3-1\right)^2}+x\sqrt[3]{3x^3-1}+x^2}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{1}{x}}{-\sqrt{\dfrac{x^2}{x^2}+\dfrac{1}{x^2}}-\dfrac{x}{x}}+\lim\limits_{x\rightarrow-\infty}\dfrac{-\dfrac{1}{x^2}}{\dfrac{\sqrt[3]{\left(3x^3-1\right)^2}}{x^2}+\dfrac{x\sqrt[3]{3x^3-1}}{x^2}+\dfrac{x^2}{x^2}}=0\)

b/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2+x-x^2}{\sqrt{x^2+x}+x}+\lim\limits_{x\rightarrow+\infty}\dfrac{x^3-x^3+x^2}{x^2+x\sqrt[3]{x^3-x^2}+\sqrt[3]{\left(x^3-x^2\right)^2}}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{x}{x}}{\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}}+\dfrac{x}{x}}+\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{x^2}{x^2}}{\dfrac{x^2}{x^2}+\dfrac{x\sqrt[3]{x^3-x^2}}{x^2}+\dfrac{\sqrt[3]{\left(x^3-x^2\right)^2}}{x^2}}\)

\(=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)

c/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{2x-1-2x-1}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{4x^2-1}+\sqrt[3]{\left(2x+1\right)^2}}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-\dfrac{2}{x^{\dfrac{2}{3}}}}{\dfrac{\sqrt[3]{\left(2x-1\right)^2}}{x^{\dfrac{2}{3}}}+\dfrac{\sqrt[3]{4x^2-1}}{x^{\dfrac{2}{3}}}+\dfrac{\sqrt[3]{\left(2x+1\right)^2}}{x^{\dfrac{2}{3}}}}=0\)

Check lai ho minh nhe :v

2 tháng 3 2021

cảm ơn bạn nhé , giờ mới trả lời được bucminh

 

NV
2 tháng 3 2021

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{1-\sqrt{4x^2-x+5}}{-ax+2}=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{1}{x}+\sqrt{4-\dfrac{1}{x}+\dfrac{5}{x^2}}}{-a+\dfrac{2}{x}}=\dfrac{2}{-a}=\dfrac{2}{3}\)

\(\Rightarrow a=-3\)

NV
2 tháng 3 2021

\(\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{1-\dfrac{3}{x}+\dfrac{6}{x^2}}+2}{2-\dfrac{3}{x}}=\dfrac{-1+2}{2}=\dfrac{1}{2}\)

9 tháng 2 2021

a/ \(\lim\limits_{x\rightarrow2}\dfrac{2+3}{4+2+4}=\dfrac{5}{10}=\dfrac{1}{2}\)

b/ \(\lim\limits_{x\rightarrow-3}\dfrac{\left(x+2\right)\left(x+3\right)}{x\left(x+3\right)}=\lim\limits_{x\rightarrow-3}\dfrac{x+2}{x}=\dfrac{-3+2}{-3}=\dfrac{1}{3}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

\(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 9}}{{x - 3}} = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {x - 3} \right)\left( {x + 3} \right)}}{{x - 3}} = \mathop {\lim }\limits_{x \to 3} \left( {x + 3} \right) = 3 + 3 = 6\)

Chọn B.