K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2015

\(C=\frac{155-\frac{10}{7}-\frac{5}{11}+\frac{5}{23}}{403-\frac{26}{7}-\frac{13}{11}+\frac{13}{23}}+\frac{\frac{3}{5}+\frac{3}{13}-0,9}{\frac{7}{91}+0,2-\frac{3}{10}}\)

\(=\frac{5\cdot\left(31-\frac{2}{7}-\frac{1}{11}+\frac{1}{23}\right)}{13\cdot\left(31-\frac{2}{7}-\frac{1}{11}+\frac{1}{23}\right)}+\frac{\frac{3}{5}+\frac{3}{13}-\frac{9}{10}}{\frac{1}{13}+\frac{1}{5}-\frac{3}{10}}\)

\(=\frac{5}{13}+\frac{3\cdot\left(\frac{1}{5}+\frac{1}{13}-\frac{3}{10}\right)}{\frac{1}{5}+\frac{1}{13}-\frac{3}{10}}\)

\(=\frac{5}{13}+3\)

\(=\frac{44}{13}\)

20 tháng 9 2015

bạn kieu cao dương nghich quá các bạn đè bạn ấy xuống đi

14 tháng 1 2017

Ta có: M=\(\frac{155-\frac{10}{7}-\frac{5}{11}+\frac{5}{23}}{403-\frac{26}{7}-\frac{13}{11}+\frac{13}{23}}\)+\(\frac{\frac{3}{5}+\frac{3}{13}-0,9}{\frac{7}{91}+0,2-\frac{3}{10}}\)

=\(\frac{5.\left(31-\frac{2}{7}-\frac{1}{11}+\frac{1}{23}\right)}{13.\left(31-\frac{2}{7}-\frac{1}{11}+\frac{1}{23}\right)}\)+\(\frac{\frac{9}{15}+\frac{9}{39}-\frac{9}{10}}{\frac{1}{13}+\frac{1}{5}+\frac{3}{10}}\)

=\(\frac{5}{13}\)+\(\frac{9.\left(\frac{1}{15}+\frac{1}{39}-\frac{1}{10}\right)}{3.\left(\frac{1}{39}+\frac{1}{15}-\frac{1}{10}\right)}\)

=\(\frac{5}{13}\)+\(\frac{9}{3}\)

=\(\frac{5}{13}\)+3

=\(\frac{44}{13}\)

cảm ơn nhiều nha yeu

24 tháng 10 2016

Bài 1:
Ta có:

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

\(\frac{99}{100}< 1\)

\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)

4 tháng 11 2019

Có phải ở sách NCPT ko bn

19 tháng 7 2017

\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+....+\frac{19}{9^2.10^2}\)

\(A=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+....+\frac{19}{81.100}\)

\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}< 1\)

\(\Rightarrow A< 1\text{(đpcm) }\)

\(B=\frac{1}{3}-\frac{3}{4}+0,6+\frac{1}{64}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)

\(\Rightarrow B=\frac{3}{15}-\frac{48}{64}+\frac{9}{15}+\frac{1}{64}-\frac{8}{36}-\frac{1}{36}+\frac{1}{15}\)

\(\Rightarrow B=\frac{3}{15}+\frac{9}{15}+\frac{1}{15}+\left(-\frac{48}{64}+\frac{1}{64}\right)+\left(-\frac{8}{36}-\frac{1}{36}\right)\)

\(\Rightarrow B=\frac{13}{15}-\frac{47}{64}-\frac{1}{4}\)

\(\Rightarrow B=-\frac{113}{960}\)

\(C=0\)

\(D=\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow D=\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+...-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}+1\)

\(\Rightarrow D=1\)

11 tháng 8 2019

D= \(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}......-\frac{1}{3.2}-\frac{1}{2.1}\)

=\(\frac{1}{99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{97.98}+\frac{1}{98.99}\right)\)

=\(\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-.....-\frac{1}{98}-\frac{1}{99}\right)\)

=\(\frac{1}{99}-\left[1-(\frac{1}{2}-\frac{1}{2}+......+\frac{1}{98}-\frac{1}{99})\right]\)

=\(\frac{1}{99}-\left(1-0-0-.....-0-\frac{1}{99}\right)\)

=\(\frac{1}{99}-1-\frac{1}{99}\)

=1