\(\frac{7}{3}\)+\(\frac{13}{3^2}\)+...+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

=\(\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+.....+\frac{1}{9^2}-\frac{1}{10^2}\)

=\(1-\frac{1}{10^2}\)

Mà \(1-\frac{1}{10^2}\)\(< 1\)

=>Tổng đó bé hơn \(1\)

8 tháng 7 2021

Sửa đề \(\frac{3}{2}+\frac{5}{2^2}+\frac{9}{2^3}+...+\frac{2^{100}+1}{2^{100}}=\frac{2+1}{2}+\frac{2^2+1}{2^2}+\frac{2^3+1}{2^3}+...+\frac{2^{100}+1}{2^{100}}\)

\(\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)(100 hạng tử 1) 

\(100+\left(1-\frac{1}{2^{100}}\right)=101-\frac{1}{2^{100}}< 101\)(1)

Vì \(-\frac{1}{2^{100}}>-1\Rightarrow101-\frac{1}{2^{100}}>101-1\Rightarrow B>100\)(2)

Từ (1) và (2) => 100 < B < 101 

3 tháng 8 2016

Đặt BT là A

\(\Rightarrow A=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+....+\frac{10^2-9^2}{9^2.10^2}\)

\(A=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{3^2}-\frac{1}{2^2}+....+\frac{1}{9^2}-\frac{1}{10^2}\)

\(A=1-\frac{1}{10^2}< 1\)

=> A<1(đpcm)

18 tháng 6 2019

Hình như sửa đề lại nhé

Câu hỏi của Tuấn Anh - Toán lớp 7 - Học toán với OnlineMath

Tham khảo nhé