K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2019

@Akai Haruma

NV
28 tháng 3 2019

Do \(\left|x\right|\ge2;\left|y\right|\ge2\Rightarrow xy\ne0\)

Ta luôn có \(\left\{{}\begin{matrix}\frac{1}{x}\le\frac{1}{\left|x\right|}\le\frac{1}{2}\\\frac{1}{y}\le\frac{1}{\left|y\right|}\le\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\frac{1}{x}+\frac{1}{y}\le\frac{1}{2}+\frac{1}{2}=1\)

\(\frac{xy}{x+y}=\frac{2003}{2004}\Leftrightarrow\frac{x+y}{xy}=\frac{2004}{2003}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{2004}{2003}\)

Ta có \(\frac{2004}{2003}>1\)\(\frac{1}{x}+\frac{1}{y}\le1\Rightarrow VT< VP\Rightarrow\) phương trình vô nghiệm