Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo mình hiểu
\(\left(\overrightarrow{a};\overrightarrow{b}\right)=0^o\) thì \(\overrightarrow{a},\overrightarrow{b}\) sẽ cùng phương, cùng chiều
\(\Rightarrow\overrightarrow{a},\overrightarrow{b}\) cùng hướng
vậy đc chưa bạn
Nguyễn thị thu trang,Nguyễn Huy Tú,Akai Haruma,Mysterious Person,Mashiro Shiina,Phương An,Võ Đông Anh Tuấn,Trần Việt Linh,soyeon_Tiểubàng giải,Nguyễn Thanh Hằng,Ace Legona,Thiên Yết,JakiNatsumi,DƯƠNG PHAN KHÁNH DƯƠNG,Dương Nguyễn,saint suppapong udomkaewkanjana,TRẦN MINH HOÀNG,Arakawa Whiter,
Đặt \(f\left(1\right)=d\)
\(f\left(n+1\right)=af^2\left(n\right)+bf\left(n\right)+\dfrac{b^2}{4a}-\dfrac{b}{2a}\)
\(\Leftrightarrow f\left(n+1\right)+\dfrac{b}{2a}=a\left[f\left(n\right)+\dfrac{b}{2a}\right]^2\)
Đặt \(f\left(n\right)+\dfrac{b}{2a}=g\left(n\right)\Rightarrow\left\{{}\begin{matrix}g\left(1\right)=d+\dfrac{b}{2a}\\g\left(n+1\right)=a.g^2\left(n\right)\end{matrix}\right.\)
\(\Rightarrow g\left(n\right)=a.g^2\left(n-1\right)=a\left[a.g^2\left(n-2\right)\right]^2=a^{2^2-1}.g^{2^2}\left(n-2\right)=...=a^{2^{n-1}-1}.\left[g\left(1\right)\right]^{2^{n-1}}\)
\(\Rightarrow g\left(n\right)=a^{2^{n-1}-1}.\left(d+\dfrac{b}{2a}\right)^{2^{n-1}}\)
\(\Rightarrow f\left(n\right)=a^{2^{n-1}-1}.\left(d+\dfrac{b}{2a}\right)^{2^{n-1}}-\dfrac{b}{2a}\) (1)
Sau đó kiểm tra lại công thức (1) bằng quy nạp là được
Bằng phản chứng giả sử \(\left(B\Rightarrow C\right)\Rightarrow\left(A\Rightarrow C\right)\)sai
Khi đó \(B\Rightarrow C\)đúng và \(A\Rightarrow C\)sai
(Nhớ rằng mệnh đề Giả thiết - Kết luận chỉ sai khi Giả thiết đúng và Kết luận sai)
Vì \(A\Rightarrow B\)và \(B\Rightarrow C\)đều đúng nên \(A\Rightarrow B\Rightarrow C\)đúng
Lúc này \(A\Rightarrow C\)đúng ----> Mâu thuẫn giả thiết ---> Đề bài đúng.