Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mệnh đề B và D đều sai
Mệnh đề B chỉ đúng khi a;b;c;d dương
Mệnh đề D thì sai rõ ràng
Suy luận C là chính xác do \(0< x< 1\) nên x > 0 nên nhân hai vế của bất phương trình \(y< 1\) với x ta được \(xy< x\) và do x < 1 nên theo tính chất bắc cầu của bất phương trình ta được: \(xy< 1\).
Câu 1: đáp án B, thay tọa độ A vào pt được \(1\le0\) (sai)
Câu 2: đáp án D
\(\left(m+n\right)^2\ge4mn\Leftrightarrow m^2+n^2+2mn\ge4mn\Leftrightarrow m^2+n^2\ge2mn\)
Câu 3: đáp án D
\(m=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{4}{2}=2\)
Câu 4:
\(\Leftrightarrow5x-\frac{2}{5}x>4\Leftrightarrow\frac{23}{5}x>4\Leftrightarrow x>\frac{20}{23}\)
Câu 5:
\(f\left(x\right)>0\Leftrightarrow23x-20>0\Leftrightarrow x>\frac{20}{23}\) đáp án C
Câu 6:
Bạn viết sai đề, nhìn BPT đầu tiên \(2x-5-1>0\) là thấy có vấn đề
Câu 7:
\(3x+2\left(y+3\right)>4\left(x+1\right)-y+3\)
\(\Leftrightarrow x-3y+1< 0\)
Thay tọa độ D vào ta được \(-1< 0\) đúng nên đáp án D đúng
Câu 8:
Thay tọa độ vào chỉ đáp án D thỏa mãn
Câu 9:
Đáp án C đúng
Câu 10:
Đáp án B đúng (do tọa độ x âm ko thỏa mãn BPT đầu tiên)
a)
\(\left\{{}\begin{matrix}\left(2m-1\right)^2-4\left(m^2-m\right)\ge0\left(1\right)\\\dfrac{1}{m^2-m}>0\left(2\right)\\\dfrac{2m-1}{m^2-m}>0\left(3\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow m^2-m>0\Rightarrow\left[{}\begin{matrix}m< 0\\m>1\end{matrix}\right.\) (I)
Kết hợp \(\left(2\right)\Rightarrow\left(3\right)\Leftrightarrow2m-1>0\Rightarrow m>\dfrac{1}{2}\)(II)
\(\left(1\right)\Leftrightarrow4m^2-4m+1-4m^2+4m=1\ge0\forall m\) (III)
Từ (I) (II) (III) \(\Rightarrow m>1\)
Kết luận nghiệm BPT m>1
b)
\(\left\{{}\begin{matrix}\left(m-2\right)^2-\left(m+3\right)\left(m-1\right)\ge0\left(1\right)\\\dfrac{m-2}{m+3}< 0\left(2\right)\\\dfrac{m-1}{m+3}>0\left(3\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow m^2-4m+4-m^2-2m+3=-6m+7\ge0\Rightarrow m\le\dfrac{7}{6}\)(I)
\(\left(2\right)\Leftrightarrow-3< m< 2\) (2)
\(\left(3\right)\Leftrightarrow\left[{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\)(3)
Nghiệm Hệ BPT là: \(1< m\le\dfrac{7}{6}\)
a) \(\left\{{}\begin{matrix}2x-1\le0\\-3x+5< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\x>\dfrac{5}{3}\end{matrix}\right.\)\(\Leftrightarrow x\in\varnothing\).
b) Vẽ hai đường thẳng \(y=3;2x-3y+1=0\).
Vì điểm \(O\left(0;0\right)\) có tọa độ thỏa mãn bất phương trình \(2x-3y+1>0\) và không thỏa mãn bất phương trình \(3-y< 0\) nên phần không tô màu là miền nghiệm của hệ bất phương trình: \(\left\{{}\begin{matrix}3-y< 0\\2x-3y+1>0\end{matrix}\right.\).
TenAnh1
TenAnh1
A = (-4.34, -5.96)
A = (-4.34, -5.96)
A = (-4.34, -5.96)
B = (11.02, -5.96)
B = (11.02, -5.96)
B = (11.02, -5.96)
1.b
2.d