Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M là trung điểm BC \(\Rightarrow AM\perp BC\Rightarrow AM\perp\left(BCC'B'\right)\)
\(\Rightarrow\widehat{AC'M}\) là góc giữa AC' và (BCC'B')
\(AM=\dfrac{a\sqrt{3}}{2}\) ; \(C'M=\sqrt{C'C^2+\left(\dfrac{BC}{2}\right)^2}=\dfrac{a\sqrt{5}}{2}\)
\(tan\widehat{AC'M}=\dfrac{AM}{C'M}=\dfrac{\sqrt{15}}{5}\)
Gọi M là trung điểm BC \(\Rightarrow MG\) là đường trung bình tam giác BCB'
\(\Rightarrow MG||BB'\Rightarrow MG\perp\left(ABC\right)\)
\(\Rightarrow\widehat{GAM}\) là góc giữa AG và (ABC)
\(MG=\dfrac{1}{2}BB'=\dfrac{a}{2}\) ; \(AM=\dfrac{AB\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\)
\(tan\widehat{GAM}=\dfrac{MG}{AM}=\dfrac{\sqrt{3}}{3}\)
đl hàm số cosin cho \(\Delta ACB\Rightarrow AB=a\sqrt{7}\)
va \(S_{\Delta ACB}=a^2\dfrac{\sqrt{3}}{2}\Rightarrow CI=a\dfrac{\sqrt{21}}{7}\)
\(\Delta A'CI\)vuông tại I,có \(\widehat{CA'}I=30^0\Rightarrow CA'=2a\dfrac{\sqrt{21}}{7}\Rightarrow AA'=a\dfrac{\sqrt{35}}{7}\)\(\Rightarrow BM=a\dfrac{\sqrt{35}}{14}\)
\(\Delta ABM\Rightarrow AM=a\dfrac{\sqrt{1407}}{14}\)
goi H la hinh chieu cua A' len(ACM) \(\Rightarrow A'H\perp AM\)
ke MK\(\perp\) AA', trong tam giác AA'M cho ta : A'H.ÀM=MK.AA'\(\Rightarrow A'H=\dfrac{a\sqrt{7}.\dfrac{\sqrt{35}}{7}a}{a\dfrac{\sqrt{1407}}{14}}=\dfrac{a14\sqrt{5}}{\sqrt{1407}}\)