K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

Khối đa diện

Khối đa diện

3 tháng 6 2019

Chọn C

Gọi h là độ dài cạnh bên của lăng trụ đứng đã cho.

Vì MNPQ là tứ diện đều nên

= 0

 

*Chú ý một khối tứ diện đều (tất cả các cạnh bằng nhau) hoặc một khối tứ diện gần đều (độ dài cặp cạnh đối bằng nhau) thì cặp cạnh đối của chúng vuông góc với nhau (xem chương góc và khoảng cách).

*Chú ý tích vô hướng cho hai véctơ cùng gốc 

21 tháng 8 2019

1 tháng 4 2017

Theo công thức ta có:

Sxq = 2πrh = 2√3 πr2

Stp = 2πrh + 2πr2 = 2√3 πr2 + 2 πr2 = 2(√3 + 1)πr2 ( đơn vị thể tích)

b) Vtrụ = πR2h = √3 π r3

c) Giả sử trục của hình trụ là O1O2 và A nằm trên đường tròn tâm O1, B nằm trên đường tròn tâm O2; I là trung điểm của O1O2, J là trung điểm cảu AB. Khi đó IJ là đường vuông góc chung của O1O2 và AB. Hạ BB1 vuông góc với đáy, J1 là hình chiếu vuông góc của J xuống đáy.

Ta có là trung điểm của , = IJ.

Theo giả thiết = 300.

do vậy: AB1 = BB1.tan 300 = = r.

Xét tam giác vuông

AB1 = BB1.tan 300 = O1J1A vuông tại J1, ta có: = - .

Vậy khoảng cách giữa AB và O1O2 :


20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Ta có : \(\dfrac{KM}{AA'}=\dfrac{IK}{IA}=\dfrac{2}{3}\Rightarrow KM=\dfrac{2}{3}h\)

Xét tam giác vuông IKM ta có : \(IM^2=IK^2+KM^2=\dfrac{3a^2}{9}+\dfrac{4h^2}{9}=\dfrac{3a^2+4h^2}{9}\)

Vậy :

\(IM=\dfrac{\sqrt{3a^2+4h^2}}{3}\)

13 tháng 8 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi r là bán kính mặt cầu

ta có Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Chọn B

30 tháng 3 2016

Khối đa diện

31 tháng 3 2016

A B C A' B' C' N M K

\(AA'\perp\left(ABC\right)\Rightarrow\widehat{A'BA}\) là góc giữa A'B với đáy

Suy ra : \(\widehat{A'BA}=60^o\Rightarrow AA'=AB.\tan\widehat{A'BA}=a\sqrt{3}\)

Do đó \(V_{ABC.A'B'C'}=AA'.S_{\Delta ABC}=\frac{3a^2}{4}\)

Gọi  K là trung điểm cạnh BC, suy ra Tam giác MNK vuông tại K, có :

\(MK=\frac{AB}{2}=\frac{a}{2};NK=AA'=a\sqrt{3}\)

Do đó : \(MN=\sqrt{MK^2+NK^2}=\frac{a\sqrt{13}}{2}\)