K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2019

Đáp án D

14 tháng 7 2017

Chọn đáp án D

2 tháng 11 2018

Đáp án D

26 tháng 9 2018

Đáp án C.

Ta có SAD là tam giác đều nên S H ⊥ A D  

Mặt khác S A D ⊥ A B C D ⇒ S H ⊥ A B C D .  

Dựng  B E ⊥ H C ,

do B E ⊥ S H ⇒ B E ⊥ S H C  

Do đó d = B E = 2 a 6 ; S H = a 3 ; A D = 2 a  

Do S C = a 15 ⇒ H C = S C 2 − S H 2 = 2 a 3 .  

Do S A H B + S C H D = 1 2 a A B + C D = S A B C D 2  

suy ra  V S . A B C D = 2 V S . H B C = 2 3 . S H . S B C H

= 3 2 a 3 . B E . C H 2 = 4 a 3 6 .

6 tháng 5 2018

18 tháng 1 2019

Đáp án C

Tam giác SAD đều cạnh 2 a ⇒ S H = a 3 ⇒ H C − 2 a 3 .  

Kẻ BK vuông góc H C ⇒ B K ⊥ S H C ⇒ B K − 2 a 6  

Diện tích tam giác BHC là S Δ B H C = 1 2 B K . H C = 6 a 2 2  

Mà S A B C D = S Δ H A B + S Δ H C D + S Δ H B C = 1 2 S A B C D + S Δ H B C ⇒ S A B C D = 2   x   S Δ H B C = 12 a 2 2  

V S . A B C D = 1 3 . S H . S Δ H B C = 1 3 . a 3 .12 a 2 2 = 4 6 a 3  

21 tháng 6 2018

13 tháng 2 2017

Chọn D.

Phương pháp:

+) Sử dụng công thức tỉ lệ thể tích:

Cho khối chóp S.ABC, các điểm A 1 ,   B 1 ,   C 1  lần lượt thuộc SA, SB, SC

+) Chia khối chóp đã cho thành các khối chóp nhỏ, tính thể tích của từng khối chóp.

Cách giải:

I,J lần lượt là trung điểm của SM, SC (do K là trung điểm của SA)

Trong (SAB), gọi N là giao điểm của IK và AB

Trong (ABCD), kẻ đường thẳng qua N song song AC, cắt AD tại Q, CD tại P.

Khi đó, dễ dàng chứng minh P, Q lần lượt là trung điểm của CD, AD và

*) Gọi L là trung điểm của SD

Khi đó, khối đa diện SKJPQD được chia làm 2 khối: hình lăng trụ tam giác KJL.QPD và hình chóp tam giác S.KJL

28 tháng 7 2018

Chọn đáp án B.