Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+x\right)^n=\sum\limits^n_{k=0}C_n^kx^k\)
Hệ số của 2 số hạng liên tiếp là \(C_n^k\) và \(C_n^{k+1}\)
\(\Rightarrow7C_n^k=5C_n^{k+1}\Leftrightarrow\frac{7n!}{k!.\left(n-k\right)!}=\frac{5n!}{\left(k+1\right)!\left(n-k-1\right)!}\)
\(\Leftrightarrow\frac{7}{n-k}=\frac{5}{k+1}\Leftrightarrow7k+7=5n-5k\)
\(\Leftrightarrow5n=12k+7\Rightarrow n=\frac{12k+7}{5}\)
\(\Rightarrow n_{min}=11\) khi \(k=4\)
2/ \(\left(x-2\right)^{100}=\sum\limits^{100}_{k=0}C_{100}^kx^k.\left(-2\right)^{100-k}\)
\(a_{97}\) là hệ số của \(x^{97}\Rightarrow k=97\)
Hệ số là \(C_{100}^{97}.\left(-2\right)^3\)
Xét khai triển:
\(\left(x+1\right)^n=C_n^0+C_n^1x+C_n^2x^n+C_n^3x^3+...+C_n^nx^n\)
Đạo hàm 2 vế:
\(n\left(x+1\right)^{n-1}=C_n^1+2C_n^2x+3C_n^3x^2+...+nC_n^nx^{n-1}\)
Thay \(x=1\) vào ta được:
\(n.2^{n-1}=C_n^1+2C_n^2+3C_n^3+...+nC_n^2=256n\)
\(\Rightarrow2^{n-1}=256=2^8\Rightarrow n=9\)
Câu 2:
\(\left(x-2\right)^{80}=a_0+a_1x+a_2x^2+a_3x^3+...+a_{80}x^{80}\)
Đạo hàm 2 vế:
\(80\left(x-2\right)^{79}=a_1+2a_2x+3a_3x^2+...+80a_{80}x^{79}\)
Thay \(x=1\) ta được:
\(80\left(1-2\right)^{79}=a_1+2a_2+3a_3+...+80a_{80}\)
\(\Rightarrow S=80.\left(-1\right)^{79}=-80\)
Xét khai triển:
\(\left(1+x\right)^n=C_n^0+C_n^1x+C_n^2x^2+...+C_n^nx^n\)
\(\Leftrightarrow x\left(1+x\right)^n=C_n^0x+C_n^1x^2+C_n^2x^3+...+C_n^nx^{n+1}\)
Đạo hàm 2 vế:
\(\left(1+x\right)^n+nx\left(1+x\right)^{n-1}=C_n^0+2C_n^1x+3C_n^2x^2+...+\left(n+1\right)C_n^nx^n\)
Thay \(x=1\)
\(\Rightarrow2^n+n.2^{n-1}=1+2C_n^1+3C_n^2+...+\left(n+1\right)C_n^n\)
\(\Rightarrow2^{n-1}\left(2+n\right)-1=111\)
\(\Rightarrow2^{n-1}\left(2+n\right)=112=2^4.7\)
\(\Rightarrow n=5\)
\(\left(x^2+\dfrac{2}{x}\right)^5=\sum\limits^5_{k=0}C_5^kx^{2k}.2^{5-k}.x^{k-5}=\sum\limits^5_{k=0}C_5^k.2^{5-k}.x^{3k-5}\)
\(3k-5=4\Rightarrow k=3\Rightarrow\) hệ số: \(C_5^3.2^2\)
`2^n C_n ^0+2^[n-1] C_n ^1+2^[n-2] +... +C_n ^n=59049`
`<=>(2+1)^n=59049`
`<=>3^n=59049`
`<=>n=10 =>(2x^2+1/[x^3])^10`
Xét số hạng thứ `k+1:`
`C_10 ^k (2x^2)^[10-k] (1/[x^3])^k ,0 <= k <= 10`
`=C_10 ^k 2^[10-k] x^[20-5k]`
Số hạng chứa `x_5` xảy ra `<=>20-5k=5<=>k=3`
Với `k=3` thì số hạng cần tìm là: `C_10 ^3 2^[10-3] x^5=15360 x^5`
Chọn A
Ta có:
Suy ra:
Thay
vào giả thiết ta có: