Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHE có
AB vừa là đường cao, vừa là trung tuyến
nên ΔAHE cân tại A
=>AB là phân giác của góc HAE và AE=AH
Xét ΔAHF có
AC vừa là đường cao, vừa là trung tuyến
nên ΔAHF cân tại A
=>AC là phân giác của góc HAF và AH=AF
=>AE=AF
Xét ΔAHM và ΔAEM có
AH=AE
góc HAM=góc EAM
AM chung
=>ΔAHM=ΔAEM
=>góc AHM=góc AEM
Xét ΔAHN và ΔAFN có
AH=AF
góc HAN=góc FAN
AN chung
=>ΔAHN=ΔAFN
=>góc AHN=góc AFN
=>góc AHN=góc AHM
=>HA là phân giác của góc MHN
b: Xét ΔHEF có HI/HE=HK/HF
nên IK//EF
=>IK//MN
Hình tự vẽ
a,\(\Delta AMB\)và \(\Delta DMC\)có:
AM = DM (gt)
\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)
MB = MC (gt)
\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)
\(\Rightarrow\widehat{ABM}=\widehat{DCM}\)(2 góc tương ứng)
\(\Rightarrow AB//CD\)( vì có cặp góc so le trong bằng nhau )
b,hơi sai sai bn ơi
MK KO GỬI ĐC ẢNH CÁI HÌNH LÊN THÔNG CẢM
A)
xét \(\Delta AMB\) VÀ \(\Delta DMC\) CÓ:
\(MB=MC\)(DO M LÀ TRUNG ĐIỂM CỦA BC)
\(AM=MD\left(GT\right)\)
\(\widehat{AMB}=\widehat{DMC}\)(2 GÓC ĐỐI ĐỈNH)
\(\Rightarrow\)\(\Delta AMB=\Delta DMC\left(c.g.c\right)\left(đpcm\right)\)
đợi chút,mk làm phần b,c sau
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
Nếu được thì vẽ hình giúp mình luôn nha, please!!!!😢
a) Xét ΔKFH vuông tại H và ΔAFH vuông tại H có
HF chung
KH=AH(gt)
Do đó: ΔKFH=ΔAFH(hai cạnh góc vuông)
⇒KF=AF(hai cạnh tương ứng)
b) Sửa đề: MB=MK
Xét ΔKMF và ΔBMC có
MF=MC(M là trung điểm của FC)
\(\widehat{KMF}=\widehat{BMC}\)(hai góc đối đỉnh)
MK=MB(gt)
Do đó: ΔKMF=ΔBMC(c-g-c)
⇒KF=BC(hai cạnh tương ứng)
mà KF=AF(cmt)
nên BC=AF(đpcm)