
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Trường hợp 1: M và A khác phía đối với OB
O B D E M A C
OC là phân giác góc AOB
=> góc AOC = góc BOC = 400
=> góc DOE = góc COB = 400 (đối đỉnh)
Vậy góc EOM = góc DOM - góc DOE = 900 - 400 = 500
Trường hợp 2: M và A cùng phía với OB
M O D B E C A
OC là phân giác góc AOB
=> góc AOC = góc BOC = 400
=> góc DOE = góc COB = 400 (đối đỉnh)
Vậy góc EOM = góc DOE + góc DOA = 400 + 900 = 1300

\(\left|x\right|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Khi x = 2 thì \(5x^2-2x+3x-1=5.2^2-2.2+3.2-1=20-4+6-1=21\)
Khi x = -2 thì \(5x^2-2x+3x-1=5.\left(-2\right)^2-2.\left(-2\right)+3.\left(-2\right)-1\)
\(=20+4-6-1=17\)

\(\frac{2x-y}{x+y}=\frac{2}{3}\)
3 . ( 2x - y ) = 2 . ( x + y )
6x - 3y = 2x + 2y
6x - 2x = 2y + 3y
4x = 5y
Vậy, \(\frac{x}{y}=\frac{4}{5}\)
~ Chúc học tốt ~
Ai ngang qua xin để lại 1 L - I - K - E
\(\frac{2x-y}{x+y}=\frac{2}{3}\Rightarrow2\cdot\left(x+y\right)=3\cdot\left(2x-y\right)\)
\(\Rightarrow2x+2y=6x-3y\)
\(\Rightarrow2x-6x=-3y-2y\Rightarrow-4x=-5y\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)

Bài 1:
a) Ta có: 7x = 4y => x/4 = y/7
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/4 = y/7 = y - x / 7 - 4 = 24/3 = 8
x/4 = 8 => x = 8 . 4 = 32
y/7 = 8 => y = 8 . 7 = 56
Vậy x = 32 và y = 56
b) Ta có: x/5 = y/6 => x/20 = y/24 (1)
y/8 = z/7 => y/24 = z/21 (2)
Từ (1) và (2) => x/20 = y/24 = z/21
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/20 = y/24 = z/21 = x + y - z / 20 + 24 - 21 = 69/23 = 3
x/20 = 3 => x = 3 . 20 = 60
y/24 = 3 => y = 3 . 24 = 72
z/21 = 3 => z = 3 . 21 = 63
Vậy x = 60; y = 72 và z = 63
c) Đặt x/3 = y/4 = k
=> x = 3k và y = 4k
Ta có: x^2 . y^2 = 144
=> (3k)^2 . (4k)^2 = 144
=> 9 . k^2 . 16 . k^2 = 144
=> 144 . k^4 = 144
=> k^4 = 144 : 144 = 1
=> k = 1 hoặc k = -1
Nếu k = 1 => x = 1 . 3 = 3; y = 1 . 4 = 4
Nếu k = -1 => x = -1 . 3 = -3; y = -1 . 4 = -4
Vậy x = {-3; 3} và y = {-4; 4}
b m n a O
* Vẽ hình hơi xấu chút
Vì Om vuông góc với Oa nên \(\widehat{mOb}\) = 900
Vì On vuông góc với Ob nên \(\widehat{bOn}\) = 900
Vì tia Om nằm giữa 2 tia Oa và Ob nên:
\(\widehat{aOm}+\widehat{mOb}=\widehat{aOb}\)
Hay 900 + \(\widehat{mOb}\) = 1200
=> \(\widehat{mOb}\) = 1200 - 900
=> \(\widehat{mOb}\) = 300
Vì tia On nằm giữa 2 tia Oa và Ob nên:
\(\widehat{bOn}+\widehat{nOa}=\widehat{aOb}\)
Hay 900 + \(\widehat{nOa}\) = 1200
=> \(\widehat{nOa}\) = 1200 - 900
=> \(\widehat{nOa}\) = 300
=> \(\widehat{nOa}=\widehat{mOb}\) (= 300)
Vậy \(\widehat{nOa}=\widehat{mOb}\)

a) Ta có: \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|2y-1\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|2y-1\right|+11\ge11\)
\(\Rightarrow A\ge11\)
\(\Rightarrow\)GTNN của A là 11 \(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|2y-1\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{2}\end{cases}}\)
Vậy ...
b) Ta có: \(\hept{\begin{cases}\left|x-1,2\right|\ge0\\\left|y+1\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-1,2\right|+\left|y+1\right|+1\ge1\)
\(\Rightarrow\frac{1}{\left|x-1,2\right|+\left|y+1\right|+1}\le1\)
\(\Rightarrow\frac{7}{\left|x-1,2\right|+\left|y+1\right|+1}\le7\)
\(\Rightarrow B\le7\)
\(\Rightarrow\)GTNN của B là 7 \(\Leftrightarrow\hept{\begin{cases}\left|x-1,2\right|=0\\\left|y+1\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1,2\\y=-1\end{cases}}\)
Vậy ...

Ta có:\(\left|\frac{1}{2}x\right|\ge0\Rightarrow3-2x\ge0\Rightarrow3\ge2x\Rightarrow x\le\frac{3}{2}\)
TH1:\(x< 0\),khi đó:
\(\left|\frac{1}{2}x\right|=3-2x\)
\(\Rightarrow\frac{-x}{2}=3-2x\)
\(\Rightarrow-x=6-4x\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)(loại)
TH2:\(x\ge0\) thì khi đó:
\(\left|\frac{1}{2}x\right|=3-2x\)
\(\Rightarrow\frac{x}{2}=3-2x\)
\(\Rightarrow x=6-4x\)
\(\Rightarrow5x=6\)
\(\Rightarrow x=\frac{6}{5}\)(thỏa mãn)
Vậy \(x=\frac{6}{5}\)

Ta có
góc ADC=góc DAB+ góc B (theo tính chất góc ngoài của tam giác)
góc ADB= góc DAC + góc C
=> góc ADC- góc ADB=góc B+ góc DAB-(góc C+ góc DAC)
Vì AD là tia phân giác của góc A
=> góc DAB= góc DAC
=>góc ADC- góc ADB=gocsB-góc C=40 độ
mà góc ADC và góc ADB là 2 góc kề bù
=> góc ADC+góc ADB=180 độ
=> góc ADC=(180 độ +40 độ):2=110 độ
KL