Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x-24 =y => x-y = 24
k = 24/ (7-3) = 6
x = 42
y = 18
( tui mong các bn hỏi bài phải nắm dc kiến thức cơ bản
thì ng làm mới hứng thú vi k phải giải thích những điều
sơ đẳng nhất)
Bài 1:
Giải:
Ta có: \(\frac{x}{y}=\frac{3}{2}\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(5x=7z\Rightarrow\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{15}=\frac{2y}{28}=\frac{x-2y+z}{21-28+15}=\frac{32}{8}=4\)
+) \(\frac{x}{21}=4\Rightarrow x=84\)
+) \(\frac{y}{14}=4\Rightarrow y=56\)
+) \(\frac{z}{15}=4\Rightarrow z=60\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(84;56;60\right)\)
Bài 2:
Giải:
Ta có: \(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\Rightarrow\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}=\frac{7x}{7z}=\frac{5y}{5t}=\frac{3x}{3z}=\frac{7y}{7t}=\frac{x}{z}=\frac{y}{t}=\frac{x}{z}=\frac{y}{t}\)
\(\frac{x}{z}=\frac{y}{t}\Rightarrow\frac{x}{y}=\frac{z}{t}\)
\(\Rightarrowđpcm\)
BÀI 1 LÀ áp dụng tính chất của dãy tỉ sỗ = nhau
BT2 là cũng vậy r ss
b) Theo đề bài, ta có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{5}\) và x+y+z=50
\(\Rightarrow\frac{x}{4}=\frac{y}{6};\frac{y}{6}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{15}=\frac{x+y+z}{4+6+15}=\frac{50}{25}=2\)
- \(\frac{x}{4}=2.4=8\)
- \(\frac{y}{6}=2.6=12\)
- \(\frac{z}{15}=2.15=30\)
Vậy x=8,y=12,z=30.
e) Theo đề bài, ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\)
\(=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\)
\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\) (vì x+y+z khác 0). Do đó x+y+z=0,5
Thay kết quả này vào đề bài ta được:
\(\frac{0,5-x+1}{x}=\frac{0,5-y+2}{y}=\frac{0,5-z-3}{z}=2\)
tức là: \(\frac{1,5-x}{x}=\frac{2,5-y}{y}=\frac{\left(-2,5\right)-z}{z}=2\)
Vậy \(x=\frac{1}{2},y=\frac{5}{6},z=\frac{\left(-5\right)}{6}\)
^...^ ^_^
Ta có :
7x=9y=21z
\(\Rightarrow\frac{7x}{63}=\frac{9y}{63}=\frac{21z}{63}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3\)
\(\Rightarrow\begin{cases}x=-27\\y=-21\\z=-9\end{cases}\)
Có:\(7x=9y=21z\)
=>\(\frac{7x}{63}=\frac{9y}{63}=\frac{21z}{63}\)
=> \(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng tc của dãy tỉ số bừng nhau ta có:
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3\)
=> \(\begin{cases}x=-27\\y=-21\\z=-9\end{cases}\)
a.
\(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}\Rightarrow\frac{5x}{35}=\frac{2y}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{35}=\frac{2y}{6}=\frac{5x-2y}{35-6}=\frac{87}{29}=3\)
\(\frac{5x}{35}=3\Rightarrow x=\frac{35\times3}{5}=21\)
\(\frac{2y}{6}=3\Rightarrow y=\frac{6\times3}{2}=9\)
Vậy \(x=21\) và \(y=9\)
b.
\(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{38}=\frac{y}{21}=\frac{34}{17}=2\)
\(\frac{2x}{38}=2\Rightarrow x=\frac{38\times2}{2}=38\)
\(\frac{y}{21}=2\Rightarrow y=2\times21=42\)
Vậy \(x=38\) và \(y=42\)
c.
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Rightarrow\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\frac{x^2}{4}=\frac{1}{4}\Rightarrow x=\sqrt{1}=\pm1\)
\(\frac{y^2}{16}=\frac{1}{4}\Rightarrow y=\sqrt{\frac{16}{4}}=\sqrt{4}=\pm2\)
\(\frac{z^2}{36}=\frac{1}{4}\Rightarrow z=\sqrt{\frac{36}{4}}=\sqrt{9}=\pm3\)
Vậy \(x=1;y=2;z=3\) hoặc \(x=-1;y=-2;z=-3\)
d.
Cách 1:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
\(6x=12\Rightarrow x=\frac{12}{6}=2\Rightarrow y=3\)
Vậy \(x=2\) và \(y=3\)
Cách 2:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+3y-1\right)-\left(2x+3y-1\right)}{5+7-6x}=0\)
\(2x+1=0\Rightarrow x=-\frac{1}{2}\)
\(3y-2=0\Rightarrow y=\frac{2}{3}\)
Vậy \(x=-\frac{1}{2}\) và \(y=\frac{2}{3}\)
Chúc bạn học tốt ^^
a,
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)
Mà : x2+y2+z2=585
=> \(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)
\(\Rightarrow\frac{x^2+y^2+z^2}{25+49+9}=\frac{585}{93}=\frac{195}{31}\)
=> x=195/31.5
=> y=195/31.7
=> z=195/31.3
Xong :)
Áp dụng tc dãy tỉ
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Xét \(\frac{12x-15y}{7}=0\Rightarrow12x-15y=0\Rightarrow12x=15y\Rightarrow\frac{x}{15}=\frac{y}{12}\)
Xét \(\frac{15y-20z}{11}=0\Rightarrow15y-20z=0\Rightarrow15y=20z\Rightarrow\frac{y}{20}=\frac{z}{15}\)
Ta có:\(\frac{x}{15}=\frac{y}{12}\Leftrightarrow\frac{x}{75}=\frac{y}{60}\) và \(\frac{y}{20}=\frac{z}{15}\Leftrightarrow\frac{y}{60}=\frac{z}{45}\)
\(\Rightarrow\frac{x}{75}=\frac{y}{60}=\frac{z}{45}\).Tiếp tục áp dụng tc dãy tỉ
\(\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)
- Với \(\frac{x}{75}=\frac{4}{15}\Rightarrow15x=4\cdot75\Rightarrow15x=300\Rightarrow x=20\)
- Với \(\frac{y}{60}=\frac{4}{15}\Rightarrow15y=4\cdot60\Rightarrow15y=240\Rightarrow y=16\)
- Với \(\frac{z}{45}=\frac{4}{15}\Rightarrow15z=4\cdot45\Rightarrow15z=180\Rightarrow z=12\)
hơi khó đọc chút ráng dịch nha
có 12x-15y phần 7= 20z -12x phần 9 = 15y-20z phần 11 =12x-15y+ 20z-12x+15y-20z phần 7+9+11 = 0 phần 27 =0
=> 12x- 15y phần 7=0 =>12x-15y=0 => 12x=15y=>4x=5y => x phần 5 = y phần 4
20z -12x phần 9 = 0 => 20z-12x=0 =>20z = 12x =>5z=3x => z phần 3=x phần5
15y-20z phần 11=0=> 15y-20z=0=>15y=20z=>3y=4z=> y phần 4=z phần 3
do đó x/5=y/4=z/3 và x+y+ z= 48
áp dụng t/c dãy tỉ số = nhau ta có
x/5=y/4=z/3= x+y+z/ 5+4+3=48/12=4
=> x/5=4=> x= 20
y/4=4=> y= 16
z/3=4=> z=12
vậy x=20; y=16;z=12
Bài 1. Ta luôn có : \(\left|x+5\right|\ge0\Rightarrow-\left|x+5\right|\le0\Rightarrow3,5-\left|x+5\right|\le3,5\Rightarrow\frac{1}{3,5-\left|x+5\right|}\ge\frac{1}{3,5}\)
Hay \(E\ge\frac{2}{7}\) . Dấu "=" xảy ra khi và chỉ khi \(\left|x+5\right|=0\Rightarrow x=-5\)
Vậy Min E = 2/7 <=> x = -5
Bài 2. Ta có : \(\left|x\right|+\left|y\right|=1\Leftrightarrow\left|\frac{1}{b}\right|+\left|\frac{c}{3}\right|=1\)
Xét các trường hợp :
1. Nếu \(b< 0,c\le0\) thì \(-\frac{1}{b}-\frac{c}{3}=1\Leftrightarrow bc+3=-3b\Leftrightarrow b\left(c+3\right)=-3\)
Vì b,c là các số nguyên nên b = -1 hoặc b = -3
+) Với b = -1 thì c+3 = 3 => c = 0 (t/m)
+) Với b = -3 thì c + 3 = 1 => c = -2 (t/m)
Vậy (b;c) = (-1;0) ; (-3;-2)
2. Nếu \(b>0,c\ge0\) thì \(\frac{1}{b}+\frac{c}{3}=1\Rightarrow bc+3=3b\Rightarrow b\left(c-3\right)=-3\)
Vì b,c là các số nguyên nên b = 1 hoặc b = 3
+) Với b = 1 thì c-3 = -3 => c = 0 (t/m)
+) Với b = 3 thì c-3 = -1 => c = 2 (t/m)
Vậy (b;c) = (3;2) ; (1;0)
3. Nếu \(b>0,c\le0\) thì \(\frac{1}{b}-\frac{c}{3}=1\Rightarrow b\left(c+3\right)=3\)
Tương tự xét như trên được (b;c) = (1;0) ; (3;-2)
4. Nếu b < 0 , \(c\ge0\) thì \(\frac{c}{3}-\frac{1}{b}=1\Rightarrow b\left(c-3\right)=3\)
=> (b;c) = (-1;0) ; (-3;2)
Vậy (b;c) = (-1;0) ; (-3;-2) ; (3;2) ; (1;0) ; (3;-2) ; (-3;2)
1)Ta có:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\)(đpcm)
Ta có:A=\(\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}\)
\(\Rightarrow A=\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{a+c}=\frac{a+c+b}{b+c+a+b+a+c}\)\(\Rightarrow A=\frac{a+b+c}{2a+2b+2c}=\frac{\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{1}{2}\)
Vậy A=\(\frac{1}{2}\)
Bài 1:
a) Ta có: 7x = 4y => x/4 = y/7
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/4 = y/7 = y - x / 7 - 4 = 24/3 = 8
x/4 = 8 => x = 8 . 4 = 32
y/7 = 8 => y = 8 . 7 = 56
Vậy x = 32 và y = 56
b) Ta có: x/5 = y/6 => x/20 = y/24 (1)
y/8 = z/7 => y/24 = z/21 (2)
Từ (1) và (2) => x/20 = y/24 = z/21
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/20 = y/24 = z/21 = x + y - z / 20 + 24 - 21 = 69/23 = 3
x/20 = 3 => x = 3 . 20 = 60
y/24 = 3 => y = 3 . 24 = 72
z/21 = 3 => z = 3 . 21 = 63
Vậy x = 60; y = 72 và z = 63
c) Đặt x/3 = y/4 = k
=> x = 3k và y = 4k
Ta có: x^2 . y^2 = 144
=> (3k)^2 . (4k)^2 = 144
=> 9 . k^2 . 16 . k^2 = 144
=> 144 . k^4 = 144
=> k^4 = 144 : 144 = 1
=> k = 1 hoặc k = -1
Nếu k = 1 => x = 1 . 3 = 3; y = 1 . 4 = 4
Nếu k = -1 => x = -1 . 3 = -3; y = -1 . 4 = -4
Vậy x = {-3; 3} và y = {-4; 4}
b m n a O
* Vẽ hình hơi xấu chút
Vì Om vuông góc với Oa nên \(\widehat{mOb}\) = 900
Vì On vuông góc với Ob nên \(\widehat{bOn}\) = 900
Vì tia Om nằm giữa 2 tia Oa và Ob nên:
\(\widehat{aOm}+\widehat{mOb}=\widehat{aOb}\)
Hay 900 + \(\widehat{mOb}\) = 1200
=> \(\widehat{mOb}\) = 1200 - 900
=> \(\widehat{mOb}\) = 300
Vì tia On nằm giữa 2 tia Oa và Ob nên:
\(\widehat{bOn}+\widehat{nOa}=\widehat{aOb}\)
Hay 900 + \(\widehat{nOa}\) = 1200
=> \(\widehat{nOa}\) = 1200 - 900
=> \(\widehat{nOa}\) = 300
=> \(\widehat{nOa}=\widehat{mOb}\) (= 300)
Vậy \(\widehat{nOa}=\widehat{mOb}\)