Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) thay m=-1 ta được
\(\left\{{}\begin{matrix}x+y=0\\-x-y=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x+y=0\\x+y=0\end{matrix}\right.\)
=> hpt vô nghiệm
b)hpt trên có vô số nghiệm <=>\(\dfrac{1}{m}=\dfrac{-m}{-1}=\dfrac{0}{m+1}\)(vô lí)
hpt trên chỉ có nghiệm duy nhất<=>\(\dfrac{1}{m}\ne\dfrac{-m}{-1}\)
<=>\(\dfrac{1}{m}\ne\dfrac{m}{1}\)
<=>\(m^2\ne1< =>m\ne\pm1\left(đpcm\right)\)
a, Khi \(m=-1\)ta có HPT : \(\hept{\begin{cases}-x+y=-2\\x-y=0\end{cases}}\)
=> HPT vô nghiệm
b, \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\\left(1-m^2\right)x=-2m^2+m+1\end{cases}}\)( * )
HPT vô nghiệm
<=> ( * ) vô nghiệm
\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-2m^2+m+1\end{cases}}\ne0\)
<=> m = 1 hoặc m = -1 mà m khác 1 và -1/2
<=> m = -1
\(\hept{\begin{cases}mx+y=4\\x-my=1\end{cases}\Rightarrow\hept{\begin{cases}m+m^2y+y=4\\x=1+my\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=1+my\\y\left(m+1\right)=4-m\end{cases}\Rightarrow\hept{\begin{cases}y=\frac{4-m}{m^2+1}\\x=\frac{m^2+1+4m-m^2}{m^2+1}=\frac{4m+1}{m^2+1}\end{cases}}}\)
\(\Rightarrow x+y=\frac{8}{m^2+1}\Leftrightarrow\frac{4-m+4m+1}{m^2+1}=\frac{8}{m^2+1}\)
<=> 5+3m=8 <=> m=1
\(\Rightarrow\hept{\begin{cases}x=\frac{4+1}{1+1}=\frac{5}{2}\\y=\frac{4-1}{2}=\frac{3}{2}\end{cases}}\)
1) Cho hệ phương trình:
{mx+y=52x−y=−2(I){mx+y=52x−y=−2(I)
a) Với m=1 ta có hệ phương trình:
{x+y=52x−y=−2{x+y=52x−y=−2
Cộng vế với vế ta được:
3x=3⇔x=1⇒y=2x+2=43x=3⇔x=1⇒y=2x+2=4
Vậy với m=11m=11 thì hệ phương trình (I) có nghiệm x=1 và y=4
b) Nghiệm (x0,y0)(x0,y0) của (I) thỏa mãn x0+y0=1x0+y0=1
nên ta có hệ phương trình:
⎧⎪⎨⎪⎩x+y=1(1)mx+y=5(2)2x−y=−2(3){x+y=1(1)mx+y=5(2)2x−y=−2(3)
Lấy (1) + (3) ta được: 3x=−1⇒x=−13⇒y=1−x=433x=−1⇒x=−13⇒y=1−x=43
Thay vào (2) suy ra m=5−yx=−11m=5−yx=−11
Vậy với m=−11m=−11 thì nghiệm của hệ phương trình (I) có tổng là 1.
2) Từ x+my=2⇒x=2−myx+my=2⇒x=2−my
Thay vào phương trình mx−2y=1mx−2y=1 ta được:
m(2−my)−2y=1⇒y=2m−1m2+2m(2−my)−2y=1⇒y=2m−1m2+2
⇒x=2−m2m−1m2+2⇒x=2−m2m−1m2+2
x=m+4m2+2x=m+4m2+2
Do m2+2>0m2+2>0 ∀m∀m
⇒x>0⇒m+4>0⇒m>−4⇒x>0⇒m+4>0⇒m>−4 và y<0⇒2m−1<0⇒m<12y<0⇒2m−1<0⇒m<12
Vậy với −4<m<12−4<m<12 thì phương trình có nghiệm duy nhất mà x>0,y<0
a: Khi m=-3 thì hệ phương trình sẽ là:
\(\left\{{}\begin{matrix}-3x+2y=1\\x-2\cdot\left(-3\right)\cdot y=-3-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-3x+2y=1\\x+6y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x+2y=1\\3x+18y=-15\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}20y=-14\\x+6y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{7}{10}\\x=-5-6y=-5-6\cdot\dfrac{-7}{10}=\dfrac{42}{10}-5=-\dfrac{8}{10}=-\dfrac{4}{5}\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}mx+2y=1\\x-2my=m-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2my+m-2\\m\left(2my+m-2\right)+2y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2my+m-2\\2m^2\cdot y+m^2-2m+2y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2my+m-2\\y\left(2m^2+2\right)=-m^2+2m+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{-m^2+2m+1}{2m^2+2}\\x=2m\cdot\dfrac{-m^2+2m+1}{2m^2+2}+m-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{-m^2+2m+1}{2m^2+2}\\x=\dfrac{m\left(-m^2+2m+1\right)}{m^2+1}+m-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{-m^2+2m+1}{2m^2+2}\\x=\dfrac{-m^3+2m^2+m+\left(m-2\right)\left(m^2+1\right)}{m^2+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{-m^3+2m^2+m+m^3+m-2m^2-2}{m^2+1}=\dfrac{2m-2}{m^2+1}\\y=\dfrac{-m^2+2m+1}{2m^2+2}\end{matrix}\right.\)
x-2y=-1
=>\(\dfrac{2m-2}{m^2+1}-\dfrac{2\cdot\left(-m^2+2m+1\right)}{2m^2+2}=1\)
=>\(\dfrac{2m-2}{m^2+1}-\dfrac{-m^2+2m+1}{m^2+1}=1\)
=>\(\dfrac{2m-2+m^2-2m-1}{m^2+1}=1\)
=>\(m^2-3=m^2+1\)
=>-3=1(vô lý)