\(\hept{\begin{cases}\left(m-2\right)x-3y=-5\\x+my=3\end{cases}}\)

Cmr hpt...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2019

Từ đề ta rút ra pt \(\frac{\left(m-2\right)x+5}{3}=\frac{3-x}{m}\)

\(\Leftrightarrow m^2x-2mx+5m-9+3x=0\\ \Leftrightarrow x\left(m^2-2m+3\right)+5m-9=0\)

Vì đây là pt bậc nhất nên chỉ có 1 nghiệm duy nhất\(x=\frac{9-5m}{m^2-2m+3}\)

5 tháng 4 2020

\(D=m\left(m-2\right)+3=m^2-2m+3\)

hpt có nghiệm duy nhất\(\Leftrightarrow D\ne0\)mà \(D=m^2-2m+3=\left(m-1\right)^2+2\ne0,\forall m\)

\(\Rightarrow\)hpt luôn có nghiệm duy nhất

nghiệm duy nhất đó là:\(\hept{\begin{cases}x=\frac{D\left(x\right)}{D}\\y=\frac{D\left(y\right)}{D}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{-5m+9}{m^2-2m+3}\\y=\frac{3m-1}{m^2-2m+3}\end{cases}}\)

24 tháng 3 2020

\(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\mx-y=m^2-2\left(2\right)\end{cases}}\)

\(\left(2\right)\Rightarrow y=-m^2+2+mx\)

Thay (1) => \(\left(m+1\right)x+m\left(-m^2+2+mx\right)=2m-1\)

\(\Leftrightarrow\left(m^2+m+1\right)x-m^3+1=0\)

\(\Leftrightarrow x=\frac{m^3-1}{m^2+m+1}=m-1\)

\(\Rightarrow y=-m^2+2+m\left(m-1\right)=-m^2+2+m^2-m=2-m\)

Ta có: (m-1)(2-m)=-m2+3m-2=\(-\left(m-\frac{3}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu "=" <=> \(m=\frac{3}{2}\)

Vậy \(m=\frac{3}{2}\)hpt có nghiệm duy nhất

a, Khi \(m=-1\)ta có HPT : \(\hept{\begin{cases}-x+y=-2\\x-y=0\end{cases}}\)

=> HPT vô nghiệm

b, \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\\left(1-m^2\right)x=-2m^2+m+1\end{cases}}\)( * )

HPT vô nghiệm

<=> ( * ) vô nghiệm

\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-2m^2+m+1\end{cases}}\ne0\)

<=> m = 1 hoặc m = -1 mà m khác 1 và -1/2 

<=> m = -1