K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2017

Trình bày nv bạn nhưng k bít mình làm có đúng k:

Hpt có ng duy nhất 

<=> 2/m khác m/2 

<=> m khác 2 va -2

Ta có hệ đã cho tương đương vs:\(\hept{\begin{cases}2x-2y=0\\\left(m+2\right)Y=1\end{cases}}\)

<=>\(\hept{\begin{cases}2x=2y\\y=\frac{1}{m+2}\end{cases}}\)

<=>x=y=1/( m+2).

Theo bài ra thì x,y là các số nguyên

 =>1/(m+2) nguyên

 => m+2 thuộc Ư (1)

=> m+2 thuộc {1;-1}

m+2=1=>m=-1(Tm)

m+2=-1=>m=-3(Tm)

Vậy....

18 tháng 5 2017

\(\left(2\right)\Rightarrow y=2x-m-5.\)

\(\left(1\right)\Rightarrow\left(m-1\right)x-m\left(2x-m-5\right)=3m-1.\)

\(\left(m+1\right)x=m^2+2m+1.\)

Để HPT có nghiệm duy nhất => m +1 \(\ne\)0 hay m \(\ne\)-1

=>\(x=m+1>0\Rightarrow m>-1\)

=> y =2( m+1) -m -5 =m -3 > 0 => m> 3

Suy ra số nguyên m > 3 thỏa mãn 

1 tháng 12 2021

\(\left\{{}\begin{matrix}mx-y=2\\x+my=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+m\left(mx-2\right)=1\\y=mx-2\end{matrix}\right.\\ \Leftrightarrow x\left(m^2+1\right)=2m+1\Leftrightarrow x=\dfrac{2m+1}{m^2+1}\\ \Leftrightarrow y=\dfrac{m\left(2m+1\right)}{m^2+1}-2=\dfrac{2m^2+m-2m^2-2}{m^2+1}=\dfrac{m-2}{m^2+1}\)

Ta có \(x+y=1\Leftrightarrow\dfrac{2m+1+m-2}{m^2+1}=1\)

\(\Leftrightarrow3m-1=m^2+1\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)

5 tháng 4 2019

Để pt trên có nghiệm duy nhất thì ĐK là:

\(\frac{1}{m}\ne\frac{m}{-2}\)

\(\Leftrightarrow m^2\ne-2\left(luondung\right)\)

chắc vậy

5 tháng 4 2019

là sao Nguyenx công tỉnh

chả hiểu

cái này ko giải hẹ à

1 tháng 2 2021

\(\left\{{}\begin{matrix}x+mx=2\\mx-2y=1\end{matrix}\right.\)

Nếu m=0 \(\Rightarrow\left\{{}\begin{matrix}x=2\\-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{-1}{2}< 0\end{matrix}\right.\) (L)

Nếu m≠0 \(\Rightarrow\left\{{}\begin{matrix}mx+m^2y=2m\left(1\right)\\mx-2y=1\left(2\right)\end{matrix}\right.\)

Trừ từng vế của (1) cho (2) ta được:

\(m^2y+2y=2m-1\) \(\Leftrightarrow\left(m^2+2\right)y=2m-1\) \(\Leftrightarrow y=\dfrac{2m-1}{m^2+2}\) Thay vào (2) ta được:

\(mx-2\cdot\dfrac{2m-1}{m^2+2}=1\) \(\Leftrightarrow mx=1+\dfrac{4m-2}{m^2+2}=\dfrac{m^2+2+4m-2}{m^2+2}=\dfrac{m\left(m+4\right)}{m^2+2}\) 

\(x=\dfrac{m+4}{m^2+2}\)

Vì x>0, y>0 \(\Rightarrow\left\{{}\begin{matrix}\dfrac{2m-1}{m^2+2}>0\\\dfrac{m+4}{m^2+2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m-1>0\\m+4>0\end{matrix}\right.\) Vì \(m^2+2\ge2>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m>-4\end{matrix}\right.\) \(\Leftrightarrow m>\dfrac{1}{2}\) Vậy...

 

25 tháng 3 2021

Ta có x + my = 1 và mx + y = 1
<=> x = 1 - my và mx + y = 1
<=> x = 1 - my và m(1 - my) + y = 1
<=> x = 1 - my và m - m^2y + y = 1
<=> x = 1 - my và y(1 - m^2) = 1 - m
Để hpt có nghiệm duy nhất thì pt y(1 - m^2) = 1 - m có nghiệm duy nhất
<=> 1 - m^2 ≠ 0
<=> (1 - m)(1 + m) ≠ 0
<=> m ≠ ±1
Khi đó nghiệm duy nhất của hpt sẽ là
x = 1 - m/(1 + m) và y = 1/(1 + m)
Để x , y > 0
thì 1 - m/(1 + m) > 0 và 1/(1 + m) > 0
<=> 1/(1 + m) > 0
<=> m + 1 > 0
<=> m > -1
và m ≠ ±1
do đó m > - 1 và m ≠ 1
Vậy m > - 1 và m ≠ 1 thì hpt có nghiệm duy nhất thỏa mãn x , y > 0