Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+4}{2009}+\frac{x+3}{2010}=\frac{x+2}{2011}+\frac{x+1}{2012}\)\(\Leftrightarrow\)\(\left(\frac{x+4}{2009}+1\right)+\left(\frac{x+3}{2010}+1\right)=\left(\frac{x+2}{2011}+1\right)+\left(\frac{x+1}{2012}+1\right)\)
\(=\frac{x+2013}{2009}+\frac{x+2013}{2010}=\frac{x+2013}{2011}+\frac{x+2013}{2012}\)
Biểu thức trên chi thỏa mãn khi x+2013=0
\(\Rightarrow x=-2013\)
mk nghĩ là -2013 vì nếu thay x=-2013 vào thì các phân số sẽ bằng -1.
nếu cộng lại thì đc -2
k nhé
Từ 2x=3y=4z \(\Rightarrow\)\(\frac{x}{6}\)=\(\frac{y}{4}\)=\(\frac{z}{3}\) áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{x}{6}\) =\(\frac{y}{4}\)=\(\frac{z}{3}\)= \(\frac{y-x+z}{4-6+3}\)=\(\frac{2013}{1}\)= 2013
\(\Rightarrow\)x=2013.6=12078
\(\Rightarrow\)y= 2013.4=8052
\(\Rightarrow\)z=2013.3=6039
Vậy: x=12078
y=8052
z=6039
HOK TỐT!
@LOANPHAN.
bai 1.
giai chi tiet cho ban mot bai
\(x\ge\)0 (vi neu x<0 thi ve trai luon >0 VP <0 vo ly)
=>x+3>0=>Ix+3I=x+3
x+4>0=> Ix+4I=x+4
Ix+3I+Ix+4I=(x+3)+(x+4)=2x+7
2x+7=3x
7=3x-2x=x
x=7
\(\text{Bài 4:}\)
\(a.\left|x-\frac{3}{5}\right|< \frac{1}{3}\Rightarrow\orbr{\begin{cases}x-\frac{3}{5}< \frac{1}{3}\\x-\frac{3}{5}>-\frac{1}{3}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< \frac{14}{15}\\x>\frac{4}{15}\end{cases}\Rightarrow\frac{4}{15}< x< \frac{14}{15}}\)
\(b.\left|-5,5\right|=5,5\)
\(\Rightarrow\left|x+\frac{11}{2}\right|>5,5\Rightarrow\orbr{\begin{cases}x+\frac{11}{2}>5,5\\x+\frac{11}{2}< -5,5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>0\\x< -11\end{cases}}\)
\(3^{2x+4}:3^{x+1}=81\)
\(3^{2x+4-x-1}=3^4\)
\(3^{x+3}=3^4\)
\(\Rightarrow x+3=4\)
\(\Rightarrow x=1\)
Ta có: (x - 2)2 ≥ 0 mà (x - 2)2(x + 1)(x - 4) < 0
=> (x + 1)(x - 4) < 0
Th1: \(\hept{\begin{cases}x+1>0\\x-4< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 4\end{cases}}\Rightarrow-1< x< 4\)
Th2: \(\hept{\begin{cases}x+1< 0\\x-4>0\end{cases}}\Rightarrow\hept{\begin{cases}x< -1\\x>4\end{cases}}\)(Vô lý)
Vậy..
Vì x và y tỉ lệ thuận với 3 và 5:
=>x.3=y.5
=>x/5=y/3
Áp dụng tính chất dãy tỉ số bằng nhau:
x/5=y/3=y-x/3-5=4/(-2)=-2
x/5=(-2)=>x=(-2).5=-10
y/3=(-2)=>(-2).3=-6
Vậy x=-10, y=-6
(x - 4)2 = (x - 4)4
=> (x - 4)4 - (x - 4)2 = 0
=> (x - 4)2.[(x - 4)2 - 1] = 0
=> \(\left[\begin{array}{nghiempt}\left(x-4\right)^2=0\\\left(x-4\right)^2-1=0\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x-4=0\\\left(x-4\right)^2=1\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=4\\x-4\in\left\{1;-1\right\}\end{array}\right.\)
=> \(\left[\begin{array}{nghiempt}x=4\\x\in\left\{5;3\right\}\end{array}\right.\)
Vậy \(x\in\left\{3;4;5\right\}\)
\(\left(x-4\right)^2=\left(x-4\right)^4\)
\(\Rightarrow\left(x-4\right)^2-\left(x-4\right)^4=0\)
\(\Rightarrow\left(x-4\right)^2.\left[1-\left(x-4\right)^2\right]=0\)
+) \(\left(x-4\right)^2=0\Rightarrow x-4=0\Rightarrow x=4\)
+) \(1-\left(x-4\right)^2=0\Rightarrow\left(x-4\right)^2=1\Rightarrow x-4=\pm1\)
+ \(x-4=1\Rightarrow x=5\)
+ \(x-4=-1\Rightarrow x=3\)
Vậy \(x\in\left\{4;5;3\right\}\)