Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Vì x và y là 2 đại lượng tỉ lệ thuận nên ta có: \(y=kx\)
Khi x=-2 thì y=8 thay vào \(y=kx\) ta có:
\(8=k\cdot\left(-2\right)\Rightarrow k=8:\left(-2\right)=-4\)
Hệ số tỉ lệ của y đối với x là -4
b)\(y=-4x\left(1\right)\)
c)Khi x=6 thay vào (1) ta có:
\(y=-4\cdot6=-24\)
Vậy khi x=6 thì y=-24
a, hệ số tỉ lệ bằng: y = \(\frac{x}{k}\) hay 3 = \(\frac{5}{k}\) => k = \(\frac{5}{3}\)
b, y = \(\frac{x}{\frac{5}{3}}\)
c, y = \(\frac{x}{\frac{5}{3}}\)
vậy x = -5 => y = -5 : \(\frac{5}{3}\) = -3
vậy x = 10 => y = 10 : \(\frac{5}{3}\) = 6
a) Vì 2 đại lượng x và y tỉ lệ thuận vs nhau nên ta có công thức: y = k.x
Thay x = 5; y = 3 ta có:
3 = k5 ⇒ k = \(\frac{3}{5}\)
Vậy k = \(\frac{3}{5}\)
b) Theo câu a, ta có:
Thay k = \(\frac{3}{5}\), ta có:
y = \(\frac{3}{5}\) . x
Vậy: y = \(\frac{3}{5}\) . x
c) Khi x = -5
⇒ y = \(\frac{3}{5}\) . x = \(\frac{3}{5}\) . (-5) = -3
Khi x = 10
y = \(\frac{3}{5}\) . x = \(\frac{3}{5}\) . 10 = 6
Vậy: y = -3 khi x = -5
y = 6 khi x = 10
Lời giải:
+ Hai cái này thực chất là 1. Chỉ khác cách tiếp cận
Hệ số góc a nói trên khía cạnh hình học. $a$ trong này có liên quan đến góc nên nó được gọi là hệ số góc của "đường thẳng" $y=ax+b$
Còn hệ số a nói trên góc độ phương trình, như em đã học ở lớp 8, nó là hệ số gắn với $x$ trong phương trình $y=ax+b$
+ Có 4 góc, nhưng ta quy ước chỉ lấy góc cắt với trục Ox ở phía trên, bên phải, tức là ở góc phần tư thứ nhất ấy.
+ Lấy ở số 1 mà không lấy ở số 0 là sao em? Khi ta vẽ điểm $(0;1)$ thì từ trục $Ox$ em lấy giá trị $x=1$, từ trục $Oy$ em lấy giá trị $y=0$ rồi dóng thẳng hai giá trị ấy để tìm điểm $A$.
x và y tỉ lệ nghịch theo hệ số k
nên xy=k
=>y=k/x
y và z tỉ lệ thuận theo hệ số a
nên y=az
\(\Leftrightarrow a\cdot z=\dfrac{k}{x}\)
=>xz*a=k
=>xz=k/a
=>x và z tỉ lệ nghịch theo hệ số k/a
\(\left\{{}\begin{matrix}x^3+y^2=2y\left(1\right)\\y^3+x^2=2x\left(2\right)\end{matrix}\right.\)
Lấy (1)-(2), ta được:
\(x^3-y^3-\left(x^2-y^2\right)+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-x-y+2\right)=0\)
*Với \(x=y\). Từ (1) ta có: \(x^3+x^2-2x=0\)
Giải ra ta được: \(\left[{}\begin{matrix}x=0\\x=1\\x=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=1\\y=-2\end{matrix}\right.\)
*Với \(x^2+xy+y^2=x+y-2\). Đặt \(S=x+y;P=xy\).
Khi đó ta có: \(S^2-S+2=P\left(1'\right)\)
Lấy (1)+(2) ta được:
\(x^3+y^3+x^2+y^2=2\left(x+y\right)\)
\(\Rightarrow S^3-3SP+S^2-2P=2S\left(2'\right)\)
Thay (1') vào (2'), ta được:
\(S^3-3S\left(S^2-S+2\right)+S^2-2\left(S^2-S+2\right)=2S\)
\(\Leftrightarrow-2S^3+2S^2-6S-4=0\)
\(\Leftrightarrow S^3-S^2+3S+2=0\)
Đến đây mình bấm máy và nó ra nghiệm xấu ;)) bạn thử kiểm tra lại cách rút gọn của mình xem có gì sai sót nhé. Từ đây ta tìm được S, rồi tìm được P và sử dụng định lí Viète đảo để tính x,y nhé.
\(d\left(C;d\right)=\frac{\left|3.2-4\left(-5\right)+4\right|}{\sqrt{3^2+4^2}}=6\)
\(S_{ABC}=\frac{1}{2}AB.d\left(C;d\right)=\frac{1}{2}AB.6=15\Rightarrow AB=5\)
Gọi \(A\left(a;\frac{3a+4}{4}\right)\) \(\Rightarrow\overrightarrow{AI}=\left(a-2;\frac{3a-6}{4}\right)\Rightarrow AI=\sqrt{\left(a-2\right)^2+\left(\frac{3a-6}{4}\right)^2}=\frac{5}{2}\left|a-2\right|\)
\(AB=2IA\Rightarrow AI=\frac{5}{2}\Rightarrow\left|a-2\right|=1\Rightarrow\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}A\left(3;\frac{13}{4}\right)\\B\left(1;\frac{7}{4}\right)\end{matrix}\right.\)
Ta có Vì x và TLN với nhau nên
a) x*y=a suy ra 2.4=8
b)x=\(\dfrac{8}{y}\)
c)nếu y=-1 thì x = \(\dfrac{8}{-1}\)=-8
nêu y=2 thì x = 4
Tick mình nha