K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2016

1) (12x^2-12xy+3y^2)-10x(2x-y)+8=3(2x-y)^2-10x(2x-y)+8=(2x-y)(6x-3y-10x)+8=8-(2x-3y)(4x+3y)

2) áp dụng BĐT cauchy ta có (x+y)(y+z)(z+x)\(\ge\)\(2\sqrt{xy}\).\(2\sqrt{yz}\).\(2\sqrt{xz}\)=8xyz

dấu đẳng thức xảy ra khi x=y=z

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x - y)^2 +...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

a: A=3(x^2-y^2)-2(x-y)^2

=3(x+y)(x-y)-2(x-y)^2

=(x-y)(3x+3y-2x+2y)

=(x-y)(x+5y)

=(4+4)(4-5*4)

=8*(-16)=-128

b: \(B=\left(2x-4\right)^2+2\cdot\left(2x-4\right)\left(x+1\right)+\left(x+1\right)^2\)

=(2x-4+x+1)^2

=(3x-3)^2

Khi x=-1/2 thì B=(-3/2-3)^2=(-9/2)^2=81/4

c: \(C=x^2\left(5-4\right)+y^2\left(4-6\right)+z^2\left(6+4\right)\)

=x^2-2y^2+10z^2

=6^2-2*5^2+10*4^2

=146

d: x=9 thì x+1=10

\(D=x^{2017}-x^{2016}\left(x+1\right)+x^{2015}\left(x+1\right)-...-x^2\left(x+1\right)+x\left(x+1\right)-\left(x+1\right)\)

=x^2017-x^2017+x^2016+...-x^3-x^2+x^2+x-x-1

=-1

15 tháng 8 2023

a: A=3(x^2-y^2)-2(x-y)^2

=3(x+y)(x-y)-2(x-y)^2

=(x-y)(3x+3y-2x+2y)

=(x-y)(x+5y)

=(4+4)(4-5*4)

=8*(-16)=-128

 

 

2:

-8x^6-12x^4y-6x^2y^2-y^3

=-(8x^6+12x^4y+6x^2y^2+y^3)

=-(2x^2+y)^3

3:

=(1/3)^2-(2x-y)^2

=(1/3-2x+y)(1/3+2x-y)

Cảm ơn bạn nhiều! Bạn có thể làm bài 1 không

 

22 tháng 9 2020

Ta có : \(x^2-xy=y^2-yz=z^2-zx\)Cộng 3 vế , suy ra :

 \(x^2-xy+y^2-yz+z^2-zx=0\)\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Do \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0}\)

Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}< =>x=y=z}\)

Khi đó ta được : \(M=\frac{x}{z}+\frac{z}{y}+\frac{y}{x}=1+1+1=3\)( do x=y=z )

22 tháng 9 2020

Bạn ơi đề bài cho a khác 0 mà bạn