\(\sqrt{7921}\)mấy bạn nhớ nói...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

Lời giải :

Theo đề bài ta có \(\frac{x}{\frac{5}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{6}{5}}\Leftrightarrow\frac{2x}{5}=\frac{3y}{4}=\frac{5z}{6}\)

Đặt \(\frac{2x}{5}=\frac{3y}{4}=\frac{5z}{6}=k\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5k}{2}\\z=\frac{6k}{5}\end{cases}}\)

Mặt khác : \(\frac{x}{2}=\frac{z-28}{3}\)

\(\Leftrightarrow3x-2z=-56\)

\(\Leftrightarrow3\cdot\frac{5k}{2}-2\cdot\frac{6k}{5}=-56\)

\(\Leftrightarrow k=\frac{-560}{51}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{-1400}{51}\\y=\frac{-2240}{153}\\z=\frac{-224}{17}\end{cases}}\)

\(B=x+y-z=\frac{-1400}{51}+\frac{-2240}{153}-\frac{-224}{17}=\frac{-4424}{153}\)

6 tháng 7 2019

Gọi tuổi bố hiện nay là x, tuổi mẹ hiện nay là y, tuổi con hiện nay là z,

Theo đề bài, ta có:

\(y=\frac{7}{8}x\)(1) ;  \(y=3z\)(2)  ;  \(\frac{z-8}{y-8}=\frac{3}{17}\)(3);

Từ (3) suy ra: \(17\left(z-8\right)=3\left(y-8\right)\)

            \(\Leftrightarrow\)  \(17z-136=3y-24\)

           \(\Leftrightarrow\)  \(17z=3y+112\)(4);

   Thay (2) vào (4), ta được:

  17z = 3.(3z)+112

\(\Rightarrow\)17z=9z+112

\(\Rightarrow\)8z=112

\(\Rightarrow\)z=14

Vậy tuổi mẹ là: y=3z=14.3=42 (tuổi)

       tuổi bố là:  \(x=y:\frac{7}{8}=y.\frac{8}{7}=42.\frac{8}{7}=48\)(tuổi)

19 tháng 6 2019

a) \(\left(x-\frac{1}{2}\right)^4=\frac{1}{81}\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^4=\left(\frac{1}{3}\right)^4\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{1}{3}\\x-\frac{1}{2}=\frac{-1}{3}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{5}{6}\\x=\frac{1}{6}\end{cases}}\)

Vậy ...

19 tháng 6 2019

trả lời

\(x=\frac{1}{6}\)

hk tốt

7 tháng 3 2016

Nguyễn thị Thùy Dương làm đúng đấy

29 tháng 8 2015

Gợi ý đc chứng tỏ biết làm, làm đi

27 tháng 10 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{c}{d}=\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\Rightarrow\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

27 tháng 10 2018

Đặt: a/b = c/d = k   ( k \(\inℤ\))

=> \(\hept{\begin{cases}a=b.k\\c=d.k\end{cases}}\)

Ta có: \(\frac{a.c}{b.d}=\frac{b.k.d.k}{b.d}=k^2\)          (1)

Ta có: \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2.k^2+d^2.k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\)             (2)

Từ (1)và (2) \(\frac{a.c}{b.d}\)=  \(\frac{a^2+c^2}{b^2+d^2}\)  ( =k2 )

Vậy: \(\frac{a.c}{b.d}\)\(\frac{a^2+c^2}{b^2+d^2}\)

12 tháng 7 2019

  Ta có : a³ + b³ + c³ = 3abc 
<=> (a + b + c)(a² + b² + c² - ab - bc - ca) = 0 
Hoặc a + b + c = 0 
Hoặc (a² + b² + c² - ab - bc - ca) = 0 
TH1: a + b + c = 0 => a = -(b + c); b = -( a + c); c = -( a + b) 
=> A = [1 - (b +c)/b][1 - (a + c)/c] [1 - (a + b)/a] 
=> A =[1 - 1 - c/b] [1 - 1 - a/c] [1 - 1 - b/a] 
=> A = (-c/b)(-a/c)(-b/a) = -1 
TH2: (a² + b² + c² - ab - bc - ca) = 0 <=> (a - b)² +(b - c)² + (c - a)² = 0 
=> a - b = b - c = c - a = 0 hay a = b = c 
=> A = (1 + 1)(1 + 1)(1+ 1) = 8

27 tháng 10 2019

1) Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{12x-15y}{7}=\frac{20y-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)

 \(\Rightarrow\hept{\begin{cases}12x-15y=0\\15y-20z=0\end{cases}\Rightarrow}\hept{\begin{cases}12x=15y\\15y=20z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{y}{12}\\\frac{y}{20}=\frac{z}{15}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{75}=\frac{y}{60}\\\frac{y}{60}=\frac{z}{45}\end{cases}\Rightarrow}\frac{x}{75}=\frac{y}{60}=\frac{z}{45}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)

=> x = 75.4 : 15 = 20 ;

     y = 60.4 : 15 = 16 ;

     z = 45.4 : 15 = 12

Vậy x = 20 ; y = 16 ; z = 12 

27 tháng 10 2019

2) Từ đẳng thức \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Rightarrow\frac{z}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{t+x+y}=\frac{x+y+z+t}{x+y+z}\)

Nếu x + y + z + t = 0

=> x + y = - (z + t)

=> y + z = - (t + x)

=> z + t = - (x + y)

=> t + x = - (z + y)

Khi đó : 

P =  \(\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(z+y\right)}{z+y}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

=> P = 4 

Nếu x + y + z + t khác 0 

=> \(\frac{1}{y+z+t}=\frac{1}{z+t+x}=\frac{1}{t+x+y}=\frac{1}{x+y+z}\)

=> y + z + t = z + t + x = t + x + y = x + y + z

=> x =y = z = t

Khi đó : P = 1 + 1 + 1 + 1 = 4

Vậy nếu x + y + z + t = 0 thì P = - 4

       nếu x + y + z + t khác 0 thì P = 4