Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M là trung điểm cạnh AB
Dựa vào tính chất hai mặt phẳng vuông góc với nhau suy ra SM⊥(ABC)
⇒ V S.ABC = 1/3.SΔABC.SM = 1/3.1/2.AC.BC.SM
Gọi N là trung điểm của đoạn AC
MN là đường trung bình của tam giác ABC
⇒ MN ⊥ AC; MN = 1/2.BC = a
Chỉ ra góc giữa mặt phẳng (ABC) và mặt phẳng (SAC) là SMN=60 độ
Tính thể tích hình chóp S.ABC
SM = MN.tanSNM = a.tan60 = a√3.
SN = MN/cosSNM = a/cos60 = 2a.
AB = 2SM = 2a√3.
AC = √(AB^2 − BC^2) = √[(2a√3)^2−(2a)^2]=2a√2
Vậy V S.ABC = 1/3.SΔABC.SM = 1/3.1/2.AC.BC.SM = (2a^3√6)/3 (đvtt)
\(\left\{{}\begin{matrix}\left(P\right):y=x^2\\\left(d\right):y=-x+2\end{matrix}\right.\)
a) Tọa độ giao điểm của (P) và (Q) là nghiệm của hệ phương trình
\(\left\{{}\begin{matrix}y=x^2\\y=-x+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=x^2\\x^2=-x+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=x^2\\x^2+x-2=0\left(1\right)\end{matrix}\right.\)
\(pt\left(1\right)\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\) \(\left(a+b+c=1+1-2=0\right)\)
\(hpt\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=4\end{matrix}\right.\end{matrix}\right.\)
Vậy tọa độ giao điểm của (P) và (Q) là \(A\left(1;1\right)\&B\left(-2;4\right)\)
a) Phương trình hoành độ giao điểm :
x2 = - x + 2
<=> (x - 1)(x + 2) = 0
<=> \(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Với x = 1 ta được y = 1
Với x = -2 ta được y = 4
Vậy tọa độ giao điểm là A(1; 1) ; B(-2;4)
b) Gọi C(-2 ; 0) ; D(1;0)
ta được \(S_{AOB}=S_{ABCD}-S_{BOC}-S_{AOD}\)
\(=\dfrac{\left(BC+AD\right).CD}{2}-\dfrac{BC.CO}{2}-\dfrac{AD.DO}{2}\)
\(=\dfrac{\left(4+1\right).3}{2}+\dfrac{4.2}{2}+\dfrac{1.1}{2}=12\) (đvdt)