Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có ABCDABCD là hình vuông
→AB=BC=CD=DA→AB=BC=CD=DA
Mà BM=CN=DP=AQBM=CN=DP=AQ
→AB−BM=BC−CN=CD−DP=AD−AQ→AB−BM=BC−CN=CD−DP=AD−AQ
→AM=BN=CP=DQ→AM=BN=CP=DQ
→AM2+AQ2=BM2+BN2=CN2+CP2=DP2+DQ2→AM2+AQ2=BM2+BN2=CN2+CP2=DP2+DQ2
→MQ2=MN2=NP2=PQ2→MQ2=MN2=NP2=PQ2
1: AM+MB=AB
BN+NC=BC
CP+PD=CD
QD+QA=AD
mà AB=BC=CD=AD và AM=BN=CP=QD
nên BM=CN=PD=QA
2: Xét ΔMAQ vuông tại A và ΔNBM vuông tại B có
MA=NB
AQ=BM
Do đó: ΔMAQ=ΔNBM
=>MQ=MN(1)
Xét ΔMBN vuông tại B và ΔNCP vuông tại C có
MB=NC
BN=CP
Do đó: ΔMBN=ΔNCP
=>MN=NP(2)
Xét ΔNCP vuông tại C và ΔPDQ vuông tại D có
NC=PD
CP=DQ
Do đó: ΔNCP=ΔPDQ
=>NP=PQ(3)
Từ (1),(2),(3) suy ra MQ=MN=NP=PQ
ΔMAQ=ΔNBM
=>\(\widehat{AMQ}=\widehat{BNM}\)
mà \(\widehat{BNM}+\widehat{BMN}=90^0\)(ΔBMN vuông tại B)
nên \(\widehat{AMQ}+\widehat{BMN}=90^0\)
\(\widehat{AMQ}+\widehat{QMN}+\widehat{NMB}=180^0\)
=>\(90^0+\widehat{QMN}=180^0\)
=>\(\widehat{QMN}=90^0\)
Xét tứ giác MNPQ có
MN=NP=PQ=MQ
nên MNPQ là hình thoi
Hình thoi MNPQ có \(\widehat{QMN}=90^0\)
nên MNPQ là hình vuông
Xét ΔMBN và ΔPDQ có
MB=PD
góc B=góc D
BN=DQ
=>ΔMBN=ΔPDQ
=>MN=PQ
Xét ΔAMQ và ΔCPN có
AM=CP
góc A=góc C
AQ=CN
=>ΔAMQ=ΔCPN
=>MQ=PN
mà MN=PQ
nên MNPQ là hình bình hành
a: \(NP\perp BC;MQ\perp BC\)
Do đó: NP//MQ
ΔMQB vuông tại M có \(\widehat{B}=45^0\)
nên ΔMQB vuông cân tại M
=>MQ=MB
ΔNPC vuông tại N có \(\widehat{C}=45^0\)
nên ΔNPC vuông cân tại N
=>NP=NC
NP=NC
MQ=MB
NC=MB
Do đó: NP=MQ
Xét tứ giác MNPQ có
NP//MQ
NP=MQ
Do đó: MNPQ là hình bình hành
mà \(\widehat{PNM}=90^0\)
nên MNPQ là hình chữ nhật
b: Để MNPQ là hình vuông thì QM=MN
=>MB=MN
=>\(MB=MN=NC\)
=>\(MN=\dfrac{BC}{3}\)
Vậy: M,N nằm trên đoạn BC sao cho \(CN=NM=MB=\dfrac{CB}{3}\) thì MNPQ là hình vuông
a khó quá hà mình mới học lớp 5 thui .. ahihihi sory nha bạn