K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2021

Ta có ABCDABCD là hình vuông

AB=BC=CD=DA→AB=BC=CD=DA

Mà BM=CN=DP=AQBM=CN=DP=AQ

ABBM=BCCN=CDDP=ADAQ→AB−BM=BC−CN=CD−DP=AD−AQ

AM=BN=CP=DQ→AM=BN=CP=DQ

AM2+AQ2=BM2+BN2=CN2+CP2=DP2+DQ2→AM2+AQ2=BM2+BN2=CN2+CP2=DP2+DQ2

MQ2=MN2=NP2=PQ2→MQ2=MN2=NP2=PQ2

25 tháng 11 2023

1: AM+MB=AB

BN+NC=BC

CP+PD=CD

QD+QA=AD

mà AB=BC=CD=AD và AM=BN=CP=QD

nên BM=CN=PD=QA

2: Xét ΔMAQ vuông tại A và ΔNBM vuông tại B có

MA=NB

AQ=BM

Do đó: ΔMAQ=ΔNBM

=>MQ=MN(1)

Xét ΔMBN vuông tại B và ΔNCP vuông tại C có

MB=NC

BN=CP

Do đó: ΔMBN=ΔNCP

=>MN=NP(2)

Xét ΔNCP vuông tại C và ΔPDQ vuông tại D có

NC=PD

CP=DQ

Do đó: ΔNCP=ΔPDQ

=>NP=PQ(3)

Từ (1),(2),(3) suy ra MQ=MN=NP=PQ

ΔMAQ=ΔNBM

=>\(\widehat{AMQ}=\widehat{BNM}\)

mà \(\widehat{BNM}+\widehat{BMN}=90^0\)(ΔBMN vuông tại B)

nên \(\widehat{AMQ}+\widehat{BMN}=90^0\)

\(\widehat{AMQ}+\widehat{QMN}+\widehat{NMB}=180^0\)

=>\(90^0+\widehat{QMN}=180^0\)

=>\(\widehat{QMN}=90^0\)

Xét tứ giác MNPQ có

MN=NP=PQ=MQ

nên MNPQ là hình thoi

Hình thoi MNPQ có \(\widehat{QMN}=90^0\)

nên MNPQ là hình vuông

 

Xét ΔMBN và ΔPDQ có

MB=PD

góc B=góc D

BN=DQ

=>ΔMBN=ΔPDQ

=>MN=PQ

Xét ΔAMQ và ΔCPN có

AM=CP

góc A=góc C

AQ=CN

=>ΔAMQ=ΔCPN

=>MQ=PN

mà MN=PQ

nên MNPQ là hình bình hành

15 tháng 10 2023

a: \(NP\perp BC;MQ\perp BC\)

Do đó: NP//MQ

ΔMQB vuông tại M có \(\widehat{B}=45^0\)

nên ΔMQB vuông cân tại M

=>MQ=MB

ΔNPC vuông tại N có \(\widehat{C}=45^0\)

nên ΔNPC vuông cân tại N

=>NP=NC

NP=NC

MQ=MB

NC=MB

Do đó: NP=MQ

Xét tứ giác MNPQ có

NP//MQ

NP=MQ

Do đó: MNPQ là hình bình hành

mà \(\widehat{PNM}=90^0\)

nên MNPQ là hình chữ nhật

b: Để MNPQ là hình vuông thì QM=MN

=>MB=MN

=>\(MB=MN=NC\)

=>\(MN=\dfrac{BC}{3}\)

Vậy: M,N nằm trên đoạn BC sao cho \(CN=NM=MB=\dfrac{CB}{3}\) thì MNPQ là hình vuông