Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phía trong của hình vuông ABCD ta dựng tam giác đều ADK. Ta có AD = AK = DK.
\(\widehat{DAK}=90^o-\widehat{KAD}=30^o\).
Do AB = AK (cùng bằng AD) nên tam giác BAK cân tại A.
Suy ra \(\widehat{ABK}=\widehat{AKB}=\frac{180^o-\widehat{BAK}}{2}=75^o\).
Suy ra \(\widehat{BKC}=90^o-\widehat{ABK}=15^o\).
Tương tự ta cũng có \(\widehat{KDC}=30^o,\widehat{DCK}=75^o,\widehat{KCB}=15^o\).
Dễ dàng chứng minh được \(\Delta ABE=\Delta BKC\left(g.c.g\right)\) nên AE = BE = BK = KC.
Từ đó ta chứng minh được \(\Delta AED=\Delta CDK\left(c.g.c\right)\).
Suy ra \(\widehat{ADE}=\widehat{KDC}=30^o\).
Suy ra tam giác CDE đều.

A B C D E
a, Xét : \(\Delta ABD\)và \(\Delta EBD\)có :
\(\widehat{BAD}=\widehat{BED}\left(=90^o\right)\)
\(BD\)chung
\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)
b, Theo câu a, ta có :
\(\Delta ABD=\Delta EBD\left(cmt\right)\)
\(\Rightarrow AB=EB\)( cặp cạnh tương ứng )
\(\Rightarrow\Delta ABE\)là tam giác cân
Lại có : \(\widehat{B}=60^o\)
\(\Rightarrow\Delta ABE\)là tam giác đều
c, Do : \(\Delta ABE\)đều
\(\Rightarrow AB=BE=5\left(cm\right)\)
Do : \(BD\)là phân giác của \(\widehat{B}\)
\(\Rightarrow\widehat{ABD}=\widehat{EBD}=\frac{1}{2}60^o=30^o\)
Xét : \(\Delta BDE\)có : \(\widehat{BDE}=180^o-90^o-30^o=60^o\)
Lại có : \(\widehat{BDE}=\widehat{BDA}\left(\Delta ABD=\Delta EBD\right)\)
\(\Rightarrow\widehat{BDA}=60^o\Rightarrow\widehat{EDC}=180^o-60^o-60^o=60^o\)
Xét : \(\Delta BDE\)và \(\Delta CDE\)có :
\(\widehat{BED}=\widehat{CED}\left(=90^o\right)\)
\(DE\)chung
\(\widehat{BDE}=\widehat{CDE}\left(=60^o\right)\)
\(\Rightarrow\Delta BDE=\Delta CDE\left(g.c.g\right)\)
\(\Rightarrow BE=CE=5\left(cm\right)\)
\(\Rightarrow BC=BE+EC=5+5=10\left(cm\right)\)
Vậy : \(BC=10\left(cm\right)\)

Ko bt vẽ hình ở đây ntn Thông cảm 🙏🙏
Cách vẽ : Vẽ sao cho cân tại B và C và B ; C là 2 góc trong cùng phía , nối A với C
Giải:
a) Vì AB//DC ( gt)
=> BAC = ACD ( so le trong )
Mà AC là pg BCD
=> BCA = ACD
Mà BAC = ACD (cmt)
=> BCA = BAC
=> tam giác BAC cân tại B
B)
Giải :
Vì AH vuông góc với DC
=> BHD = 90 độ
Vì AF vuông góc với DC
=> AFC = 90 độ
=> AFC= BHD = 90 độ
=> AF// BH(1)
Vì AB// DC ( gt)
=> AB//FC (2)
Từ (1) và (2)=> AB = AF = FH = HB = 5cm ( Vì AF = 5cm) tính chất của hình thang
Vì tam giác ABC cân tại B ( cm ở ý a)
=> AB = BC = 5cm
Áp dụng định lý Py- ta - go ta có :
BC2= BG2+GC2
GC2=√25-- BG2
Tớ phân vân không biết đáp án của tớ có đúng không Nếu sai thông cảm nhé

bạn tự vẽ hình nhé :)
a) ABCE là hình thang có 2 cạnh bên song song => AC=BE mà AC=BD => BE=BD => tam giác BDE cân tại B
b) tam giác BDE cân tại B => góc BDC=góc E mà góc ACD=góc E (2 góc đồng vị, AC//BE) => góc BDC= góc ACD
từ đó, chứng minh đc tg ACD=BDC (c-g-c)
c) tg ACD=BDC => góc ADC=góc BCD (2 góc tương ứng) => đpcm
tg BDE cân tại B:
ta có:ACD=BAC(AB//CD)
mà ACD =BEC =>BEC=BAC
xét tg ABC va tg ECB
+BC chung
+ACB=EBC(so le trong)
+BEC=BAC(cm trên )
=>tam giac ABC =tam giac ECB
=>BDC=BEC
ma `BEC=ACD(đồng vị)
=>ACD=BDC
xét tg ACD va tg BDC,ta có :
+DC chung
+ACD=BDC
+AC=BD(gt)
=>tg ACD = tg BDC
=>ADC=BCD
=>ABCD la hình thang cân (đpcm)

a) Xét tam giác ABC và tam giác BAD, ta có:
AB: cạnh chung
AC=AD (ABCD:hình thang cân)
BC=AD (ABCD: hình thang cân)
=>Tam giác ABC = tam giác BAD (c-c-c)
=>\(\widehat{ACB}\)=\(\widehat{BDA}\)(2 góc t/ứng)
Ta có:
\(\widehat{ACD=}\widehat{ACB}\)+\(\widehat{BCD}\)
BDC^ = BDA^ + ADC^
ACD^ = BDC^ (ABCD: hình thang cân)
ACB^ = BDA^ (cmt)
=>BCD^ = ADC^
Ta lại có AB//CD (gt):
=> ABC^ = BCD^ (2 góc sole trong)
BAD^ = ADC^ (2 góc sole trong)
BCD^ = ADC^ (cmt)
=> ABC^ = BAD^
Ta có ME//BC (gt):
=> MEA^ = ABC^ (2 góc sole trong)
Mà ABC^ = BAD^ (cmt)
=> MEA^ = BAD^
Mặt khác: MAE^ = BAD^ ( 2 góc đối đỉnh)
=> MEA^ = MAE^
=> Tam giác MAE cân tại M.
MIK xin lỗi, mik đánh sai đề bài, sửa lại như sau:
a) Tam giác MAE cân
b) AF = DE

a, Xét tam giác ABC có:
AC2+AB2=242+182=900=302=BC2AC2+AB2=242+182=900=302=BC2⇒⇒ Tam giác ABC vuông tại A
Xét tam giác ABC và MDC có:
DMCˆ=BACˆDMC^=BAC^
CˆC^ là góc chung
⇒⇒ Tam giác ABC ~MDC ( g.g)
b, Vì tam giác ABC~MDC ⇒ABAC=MDMC=34⇒MD=3MC4⇒ABAC=MDMC=34⇒MD=3MC4ACBC=MCDC=45⇒DC=5MC4ACBC=MCDC=45⇒DC=5MC4
Mà:
ABMD=BCDC=ACMC=AB+BC+ACMD+DC+MC=723MC4+5MC4+4MC4ABMD=BCDC=ACMC=AB+BC+ACMD+DC+MC=723MC4+5MC4+4MC4=7212MC3⇒12MC=72.3=216⇒MC=18cm=7212MC3⇒12MC=72.3=216⇒MC=18cm⇒MD=3.184=13,5cm⇒MD=3.184=13,5cm
⇒DC=5.184=22,5cm