K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2020

a/Gọi I là tđ NC, lại có O là tđ AC \(\Rightarrow\)OI//AN

Ta có NI=IC=1/2NC=DN mà AN//OI nên K là tđ OD

b/ Cho BE giao AD tại F, kẻ OG //EF ( G thuộc AD)

Ta có OG//EF, E là tđ OA suy ra F là tđ AG(1)

Lại có O là tđ BD, OG//BF suy ra G là tđ DF(2)

Từ (1) và (2) suy ra DF=2/3 AD

Lại có NC=2/3 CD và AD=CD nên NC=DF

Xét \(\Delta ACN\&\Delta BDF\) có AC=BD, NC=DF, \(\widehat{ACN}=\widehat{BDF}=45\)( ABCD là h/vuông)

Suy ra \(\Delta ACN=\Delta BDF\Rightarrow\widehat{DBF}=\widehat{CAN}\)

Cho EF giao AN tại H, tgia AKO và BKH có góc K chung, \(\widehat{DBF}=\widehat{CAN}\Rightarrow\widehat{AOK}=\widehat{BHK}=90\)

Suy ra BE vuông góc AK tại H

c/

19 tháng 3 2020

c/Có \(\frac{BM}{NC}=\frac{\frac{1}{2}BC}{\frac{2}{3}CD}=\frac{3}{4}\left(1\right)\)( vì BC=CD)

Ta có AB//CD nên \(\frac{BK}{DK}=\frac{AB}{DN}=\frac{DC}{DN}=3\Rightarrow\frac{DK}{BK}+1=\frac{1}{3}+1\Leftrightarrow\frac{DB}{BK}=\frac{4}{3}\Leftrightarrow\frac{AC}{BK}=\frac{4}{3}\Leftrightarrow\frac{BK}{AC}=\frac{3}{4}\left(2\right)\)

(1)=(2) nên \(\frac{BM}{NC}=\frac{BK}{AC}\)(3)

Xét \(\Delta ANC\sim\Delta KMB\left(\widehat{ACN}=\stackrel\frown{DBC},\left(3\right)\right)\Rightarrow\widehat{ANC}=\widehat{KMB}\)

Tứ giác HNCB có góc H và C vuông nên góc HNC+HBC=180(4)

\(\Leftrightarrow\widehat{KMB}+\widehat{HBC}=180\Rightarrow\widehat{HKM}=90\left(\widehat{KHB}=90\right)\)

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0

b: góc GAH+góc DGA

=90 độ-góc BHA+góc DGA

=90 độ

=>DG vuông góc với AH

a: Xét ΔCDA có CI/CD=CO/CA

nên OI//AD và OI=1/2AD

=>OE//AD và OE=AD

=>AOED là hình bình hành

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

9 tháng 3 2018

a) DDAE = DBAF (c.g.c)

⇒   D A E ^ = B A F ^  và AE = AF

Mà E A D ^ + E A B ^ = 90 0   = >   E A B ^ + B A F ^ = 90 0  

Þ DAEF vuông cân tại A.

b) DEAF vuông cân nên IA = IE = FI (1); DCFE vuông có IC là đường trung tuyến Þ IE = IC = IF (2);

Từ (1) và (2) suy ra Þ IA = IC nên I thuộc trung trực của AC hay I thuộc BD.

c) Do K đối xứng với A qua I nên I là trung điểm của AK.

Mà I là trung điểm của EF(gt) nên AFKE là hình bình hành, DAEF vuông cân tại A nên AI ^ EF.

Vậy AFKE là hình vuông.