K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

Tam giác L BCM = tam giác L CDN (2 cạnh góc L = nhau) 
=> CDN^ = BCM^ 
lại có: 
BMC^ = DCI^ (so le trong) 
=> CID^ =CBM^ = 1v (xét 2 tam giác CDI và CBM) 
gọi P là trung điểm của CD và Q là giao điểm của AP và DN 
ta có tứ giác AMCP là hình bình hành vì có AM//=CP 
=> AP // CM 
=> AP L DN 
xét tam giác DCI có P là trung điểm của CD và PQ // CI nên Q là trung điểm của DI 
vậy AQ là đường cao vùa là trung tuyến của tam giác ADI => tam giác ADI cân tại A => AD=AI

~~~~~~~~~~~~~~~~~~~~ ai đi qua nhớ để lại ~~~~~~~~~~~~~~~~~~

11 tháng 8 2017

Kéo dài BO cắt AC tại H.Nhận thấy O là trọng tâm tam giác ABC>>>BO=2/3BH.Mà BH dễ tính do tam giác ABC vuông cân.

>>>Tính được BO(nhớ k nha)

1 tháng 10 2018

giờ muộn rồi chị ạ ko ai giải nữa đâu

1 tháng 10 2018

A B C D N E M 1 2

Mk chỉ nêu cách làm bạn tự triển khai nha!

CM \(\Delta ADC=\Delta CBE (g.c.g)\) (*)

(\(\angle C_1=\angle C_2\) cùng phụ với \(\angle ACB\))

\(\Rightarrow AC=CE\Rightarrow \Delta ACE \) cân tại C

\(\Rightarrow AB=CE\)

Từ (*) suy ra:

\(S_{ANEC}=S_{ACE}+S_{ANE}=S_{ABCD}+S_{ANE}\) 

            \(=\dfrac{1}{2}AB^2+\dfrac{1}{2}NA.2AB=\dfrac{1}{2}AB(AB+2NA)\)

Mà \( S_{ANCE}=\dfrac{15}{8} S_{ABCD}\) \(\Rightarrow \dfrac{15}{8}.\dfrac{1}{2} AB^2=\dfrac{1}{2}.AB(2AN+AB)\)

\(\Rightarrow 2AN+AB=\dfrac{15}{8}AB\) \(\Rightarrow \dfrac{NA}{AB}=\dfrac{7}{16}\)

CM \(\Delta NAM \) đồng dạng với \(\Delta CBM\) \((g.g)\)

\(\Rightarrow \dfrac{NA}{AB}=\dfrac{NA}{BC}=\dfrac{AM}{MB}=\dfrac{7}{16}\)

Vậy cần lấy M sao cho \(\dfrac{AM}{MB}=\dfrac{7}{16}\)