K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

a, ta có \(\widehat{C}=\widehat{B}\) , MB=NC, DC=CB (gt)

⇒DNC ∼ CMB (c-g-c)

\(\widehat{DNC}=\widehat{CMB}\)

\(\widehat{CMB}+\widehat{MCB}=90^o\)

\(\widehat{DNC}+\widehat{MCB}=90^o\)

\(\widehat{E}\) vuông

⇒MC ⊥ DN

c, theo pitago tính được DN= \(\sqrt{2^2+4^2}=2\sqrt{5}\)

áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông vào ΔDNC ta có \(\dfrac{1}{EC^2}=\dfrac{1}{DC^2}+\dfrac{1}{NC^2}=\dfrac{1}{4^2}+\dfrac{1}{2^2}=\dfrac{5}{16}\)

⇒EC= \(\sqrt{\dfrac{1}{\dfrac{5}{16}}}=\dfrac{4\sqrt{5}}{5}\)

⇒ME=MC-EC=\(2\sqrt{5}-\dfrac{4\sqrt{5}}{5}=\dfrac{6\sqrt{5}}{5}\)

⇒SΔMDN=\(\dfrac{1}{2}.ME.DN=\dfrac{1}{2}\).\(\dfrac{6\sqrt{6}}{5}\). \(2\sqrt{5}\)= 6(cm)

b,theo định lý sin trong tam giác ta có \(\dfrac{MN}{\sin\left(90^o\right)}=\dfrac{EN}{\sin\left(\widehat{CMN}\right)}\)

\(\dfrac{2\sqrt{2}}{\sin\left(90^o\right)}=\dfrac{EN}{\sin\left(\widehat{CMN}\right)}\)

theo pitago ta tính được EN=\(\sqrt{CN^2-EC^2}=\sqrt{2^2-(\dfrac{4\sqrt{5}}{5})^2}\)=\(\dfrac{2\sqrt{5}}{5}\)

⇒sin\((\widehat{CMN)}\)=\(\dfrac{\sqrt{10}}{10}\)

áp dụng định lý cosin trong tam giác ta có

\(\cos\left(\widehat{CMN}\right)=\dfrac{MN^2+MC^2-CN^2}{2.MN.MC}=\dfrac{\left(2\sqrt{2}\right)^2+\left(2\sqrt{5}\right)^2-2^2}{2.2\sqrt{2}.2\sqrt{5}}=\dfrac{3\sqrt{10}}{10}\)

còn tan và cotan em tự tính nốt nhé

5 tháng 9 2023

Trên tia đối của tia \(AM\) lấy \(I\) sao cho: \(AI=CE\)

Xét \(\Delta ADI\) và \(\Delta CDE\) có:

\(AD=CD\left(gt\right)\)

\(\widehat{DAI}=\widehat{DCE}=90^o\)

\(AI=CE\left(gt\right)\)

Vậy \(\Delta ADI=\Delta CDE\left(c.g.c\right)\)

\(\Leftrightarrow\widehat{IDA}=\widehat{EDC}\) ( 2 góc t/ứng )

\(\Leftrightarrow\widehat{AID}=\widehat{CED}\) ( 2 góc t/ứng )

\(\Leftrightarrow\) \(\widehat{CED}=\widehat{ADE}\) mà 2 góc này ở vị trí so le trong ( do \(AD//BC\) )

\(\Rightarrow\widehat{AID}=\widehat{ADE}\left(1\right)\)

Ta có: \(\widehat{ADE}=\widehat{ADM}+\widehat{MDE}\left(2\right)\)

Vì \(\widehat{MDE}=\widehat{EDC}\)

\(\Rightarrow\widehat{MED}=\widehat{IDA}\left(3\right)\)

Từ \(\left(2\right);\left(3\right)\Rightarrow\widehat{ADE}=\widehat{ADM}+\widehat{IDA}=\widehat{IDM}\left(4\right)\)

Từ \(\left(1\right);\left(4\right)\Rightarrow\widehat{AID}=\widehat{IDM}\)

\(\Leftrightarrow\widehat{MID}=\widehat{IDM}\)

\(\Leftrightarrow\Delta IDM\) cân \(\left\{M\right\}\)

\(\Leftrightarrow DM=IM\)

Ta lại có: \(IM=AM+AI=AM+CE\)

\(\Rightarrow DM=AM+CE\)

https://h.vn/hoi-dap/tim-kiem?q=Cho+h%C3%ACnh+vu%C3%B4ng+ABCD+c%C3%B3+M+v%C3%A0+N+theo+th%E1%BB%A9+t%E1%BB%B1+l%C3%A0+trung+%C4%91i%E1%BB%83m+c%E1%BB%A7a+c%C3%A1c+c%E1%BA%A1nh+AB+v%C3%A0+BC,+n%E1%BB%91i+DN+c%E1%BA%AFt+CM+t%E1%BA%A1i+I.++a)+ch%E1%BB%A9ng+minh:+CI.CM=CN.CB++b)+ch%E1%BB%A9ng+minh+DI=4IN++c)+K%E1%BA%BB+tia+AH+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+DN+t%E1%BA%A1i+H+c%E1%BA%AFt+CD+t%E1%BA%A1i+P.+Cho+AB=a.+T%C3%ADnh+di%E1%BB%87n+t%C3%ADch+t%E1%BB%A9+gi%C3%A1c+HICP&id=512186

Xem tại link này(mik gửi cho)

Học tốt!!!!!!!!!!

P/s : có hình

18 tháng 6 2019

cám ơn bạn

Bài 1: Cho tam giác ABC, kẻ AH vuông góc với BC, BH=9cm, HC=16cm, tgC=0,75.Trên AH lấy điểm O sao cho OH=2cma) CM: ABC là tam giác vuôngb) Trên cạnh AB lấy điểm M, trên OB lấy điểm P và trên OC lấy điểm N sao cho AM/AB=OP/OB=ON/OC=2/5. Tính độ dài các cạnh và số đo các góc của tam giác MPNBài 2:Cho tam giác vuông ABC( A=90 độ) Kẻ đường thẳng song song với cạnh BC cắt ccs cạnh AB,AC tại M,N, MB=12cm, NC=9cm, trung...
Đọc tiếp

Bài 1: Cho tam giác ABC, kẻ AH vuông góc với BC, BH=9cm, HC=16cm, tgC=0,75.Trên AH lấy điểm O sao cho OH=2cm

a) CM: ABC là tam giác vuông

b) Trên cạnh AB lấy điểm M, trên OB lấy điểm P và trên OC lấy điểm N sao cho AM/AB=OP/OB=ON/OC=2/5. Tính độ dài các cạnh và số đo các góc của tam giác MPN

Bài 2:Cho tam giác vuông ABC( A=90 độ) Kẻ đường thẳng song song với cạnh BC cắt ccs cạnh AB,AC tại M,N, MB=12cm, NC=9cm, trung điểm của MN và BC là E và F

a) CM: 3 điểm A,E,F thẳng hàng

b) Trung điểm BN là G. Tính độ dài các cạnh và số đo các góc của tam giác EFG

c) CM: Tam giác EFG đồng dạng tam giác ABC

Bài 3: Cho tam giác ABC, A= 90 độ. Từ trung điểm E của cạnh AC kẻ EF vuông góc với BC. Nối AF và BE

a) CM; AF= BE.cos C

b) Biết BC=10cm, sinC=0,6. Tính diện tích tứ giác ABFE

c) AF và BE cắt nhau tại O. Tính SinAOB

Bạn nào giúp mk với ạ huhu cảm ơn nhiều nhiều

1
11 tháng 7 2019

Câu hỏi của Pham Van Hung - Toán lớp 9 - Học toán với OnlineMath

Bạn tham khảo câu 2 tai link này nhé!

12 tháng 11 2015

tự vẽ hình nha 

lấy Q trung điểm CD

kẻ AQ =>AQ song song CM 

cm AQ vuông góc DN {tự cm}

tam giác DCI có AQ song song CM nên \(\frac{DQ}{QC}=\frac{DE}{EI}\) với E là giao điểm ND và AQ

tam giác ĐẠI có ĐỀ là đường cao và trung tuyến nên là tam giác vuông

tick nha 

 

11 tháng 11 2018

@ Trần Ngọc Huyền @  Em lần sau nhớ chia bài ra đăng nhiều lần nhé! . 

29 tháng 11 2019

Đồng ý với cô Nguyễn Thị Linh Chi

Đăng nhiều thế mới nhìn đã choáng