Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có \(\widehat{C}=\widehat{B}\) , MB=NC, DC=CB (gt)
⇒DNC ∼ CMB (c-g-c)
⇒\(\widehat{DNC}=\widehat{CMB}\)
mà \(\widehat{CMB}+\widehat{MCB}=90^o\)
⇒\(\widehat{DNC}+\widehat{MCB}=90^o\)
⇒\(\widehat{E}\) vuông
⇒MC ⊥ DN
c, theo pitago tính được DN= \(\sqrt{2^2+4^2}=2\sqrt{5}\)
áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông vào ΔDNC ta có \(\dfrac{1}{EC^2}=\dfrac{1}{DC^2}+\dfrac{1}{NC^2}=\dfrac{1}{4^2}+\dfrac{1}{2^2}=\dfrac{5}{16}\)
⇒EC= \(\sqrt{\dfrac{1}{\dfrac{5}{16}}}=\dfrac{4\sqrt{5}}{5}\)
⇒ME=MC-EC=\(2\sqrt{5}-\dfrac{4\sqrt{5}}{5}=\dfrac{6\sqrt{5}}{5}\)
⇒SΔMDN=\(\dfrac{1}{2}.ME.DN=\dfrac{1}{2}\).\(\dfrac{6\sqrt{6}}{5}\). \(2\sqrt{5}\)= 6(cm)
b,theo định lý sin trong tam giác ta có \(\dfrac{MN}{\sin\left(90^o\right)}=\dfrac{EN}{\sin\left(\widehat{CMN}\right)}\)
⇔\(\dfrac{2\sqrt{2}}{\sin\left(90^o\right)}=\dfrac{EN}{\sin\left(\widehat{CMN}\right)}\)
theo pitago ta tính được EN=\(\sqrt{CN^2-EC^2}=\sqrt{2^2-(\dfrac{4\sqrt{5}}{5})^2}\)=\(\dfrac{2\sqrt{5}}{5}\)
⇒sin\((\widehat{CMN)}\)=\(\dfrac{\sqrt{10}}{10}\)
áp dụng định lý cosin trong tam giác ta có
\(\cos\left(\widehat{CMN}\right)=\dfrac{MN^2+MC^2-CN^2}{2.MN.MC}=\dfrac{\left(2\sqrt{2}\right)^2+\left(2\sqrt{5}\right)^2-2^2}{2.2\sqrt{2}.2\sqrt{5}}=\dfrac{3\sqrt{10}}{10}\)
còn tan và cotan em tự tính nốt nhé
Trên tia đối của tia \(AM\) lấy \(I\) sao cho: \(AI=CE\)
Xét \(\Delta ADI\) và \(\Delta CDE\) có:
\(AD=CD\left(gt\right)\)
\(\widehat{DAI}=\widehat{DCE}=90^o\)
\(AI=CE\left(gt\right)\)
Vậy \(\Delta ADI=\Delta CDE\left(c.g.c\right)\)
\(\Leftrightarrow\widehat{IDA}=\widehat{EDC}\) ( 2 góc t/ứng )
\(\Leftrightarrow\widehat{AID}=\widehat{CED}\) ( 2 góc t/ứng )
\(\Leftrightarrow\) \(\widehat{CED}=\widehat{ADE}\) mà 2 góc này ở vị trí so le trong ( do \(AD//BC\) )
\(\Rightarrow\widehat{AID}=\widehat{ADE}\left(1\right)\)
Ta có: \(\widehat{ADE}=\widehat{ADM}+\widehat{MDE}\left(2\right)\)
Vì \(\widehat{MDE}=\widehat{EDC}\)
\(\Rightarrow\widehat{MED}=\widehat{IDA}\left(3\right)\)
Từ \(\left(2\right);\left(3\right)\Rightarrow\widehat{ADE}=\widehat{ADM}+\widehat{IDA}=\widehat{IDM}\left(4\right)\)
Từ \(\left(1\right);\left(4\right)\Rightarrow\widehat{AID}=\widehat{IDM}\)
\(\Leftrightarrow\widehat{MID}=\widehat{IDM}\)
\(\Leftrightarrow\Delta IDM\) cân \(\left\{M\right\}\)
\(\Leftrightarrow DM=IM\)
Ta lại có: \(IM=AM+AI=AM+CE\)
\(\Rightarrow DM=AM+CE\)
https://h.vn/hoi-dap/tim-kiem?q=Cho+h%C3%ACnh+vu%C3%B4ng+ABCD+c%C3%B3+M+v%C3%A0+N+theo+th%E1%BB%A9+t%E1%BB%B1+l%C3%A0+trung+%C4%91i%E1%BB%83m+c%E1%BB%A7a+c%C3%A1c+c%E1%BA%A1nh+AB+v%C3%A0+BC,+n%E1%BB%91i+DN+c%E1%BA%AFt+CM+t%E1%BA%A1i+I.++a)+ch%E1%BB%A9ng+minh:+CI.CM=CN.CB++b)+ch%E1%BB%A9ng+minh+DI=4IN++c)+K%E1%BA%BB+tia+AH+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+DN+t%E1%BA%A1i+H+c%E1%BA%AFt+CD+t%E1%BA%A1i+P.+Cho+AB=a.+T%C3%ADnh+di%E1%BB%87n+t%C3%ADch+t%E1%BB%A9+gi%C3%A1c+HICP&id=512186
Xem tại link này(mik gửi cho)
Học tốt!!!!!!!!!!
P/s : có hình
tự vẽ hình nha
lấy Q trung điểm CD
kẻ AQ =>AQ song song CM
cm AQ vuông góc DN {tự cm}
tam giác DCI có AQ song song CM nên \(\frac{DQ}{QC}=\frac{DE}{EI}\) với E là giao điểm ND và AQ
tam giác ĐẠI có ĐỀ là đường cao và trung tuyến nên là tam giác vuông
tick nha