Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ABCD là hbh nên => AB=DC, AD=BC
có M là tđ của AB, P là trung điểm của DC mà AB=DC=>MB=DP (1)
N là tđ của BC, Q là tđ của AD mà AD=BC=> QD=BN (2)
Có góc QDB=góc MBN (ABCD là hbh) (3)
(1),(2),(3)=> tam giác MPN=tam giác QDP=>QP=MN
tương tự, cm QM=PN=> tứ giác QMNP có QM=BN, QP=MN => Tứ giác MNPQ là hbh( có hai cặp cạnh đối bằng nhau)
a: Xét ΔBAC có
M,N lần lượt là trung điểm của BA,BC
=>MN là đường trung bình
=>MN//AC và \(MN=\dfrac{AC}{2}\left(1\right)\)
Xét ΔDAC có
Q,P lần lượt là trung điểm của DA,DC
=>QP là đường trung bình
=>QP//AC và \(QP=\dfrac{AC}{2}\left(2\right)\)
Từ (1),(2) suy ra MN=PQ
b: MN//AC
PQ//AC
Do đó: MN//PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
Do đó: MNPQ là hình bình hành
Sửa đề: N là trung điểm của BC
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình
=>MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của DC
Do đó: QP là đường trung bình
=>QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
Bổ sung: lấy M,N,P,Q trên các đường thẳng AB,BC,CD,DA
Sửa: sao cho MN vuông góc vs PQ