Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của tia BA lấy I sao cho BI = DQ
\(\Delta DCQ=\Delta BCI\left(c.g.c\right)\Rightarrow\hept{\begin{cases}CQ=CI\\\widehat{DCQ}=\widehat{BCI}\end{cases}}\)
Ta có: \(\widehat{QCI}=\widehat{QCB}+\widehat{BCI}=\widehat{QCB}+\widehat{DCQ}=\widehat{BCD}=90^0\)
Ta có: \(AP+AQ+PQ=2AB\)
\(\Rightarrow AP+AQ+PQ=AP+PB+AQ+QD\)
\(\Rightarrow PQ=PB+QD\)
\(\Rightarrow PQ=PB+BI\Rightarrow PQ=PI\)
\(\Delta PCQ=\Delta PCI\left(c.c.c\right)\Rightarrow\widehat{PCQ}=\widehat{PCI}=\frac{\widehat{QCI}}{2}=\frac{90^0}{2}=45^0\)
A B C D E N F K G H P
Trên tia đối của DC lấy điểm P sao cho BE=DP
Dễ dàng c/m \(\Delta\)ABE = \(\Delta\)ADP (c.g.c) => AE=AP
Và ^BAE = ^DAP => ^BAE + ^DAE = ^DAP + ^DAE => ^PAE = 900
Ta có: ^EAN + ^PAN = ^PAE = 900. Mà ^EAN = 450 => ^EAN = ^PAN = 450
Xét \(\Delta\)ANE & \(\Delta\)ANP có: AE=AP; ^EAN = ^PAN; AN chung => \(\Delta\)ANE = \(\Delta\)ANP (c.g.c)
=> ^APN = ^AEN hay ^APD = ^AEH. Mà ^APD = ^AEB (Do \(\Delta\)ABE = \(\Delta\)ADP)
=> ^AEB = ^AEH => \(\Delta\)ABE = \(\Delta\)AHE (Cạnh huyền góc nhọn) => AB=AH
Và ^BAE = ^HAE hay ^BAG = ^HAG
=> \(\Delta\)AGB = \(\Delta\)AGH (c.g.c) => ^ABG = ^AHG. Tương tự: ^ADK = ^AHK
=> ^ABG + ^ADK = ^AHG + ^AHK => ^KHG = 900 => \(\Delta\)KHG là tam giác vuông (đpcm).
=> HK2 + HG2 = KG2 . Lại có: HG=BG; HK=DK (Do \(\Delta\)AGB=\(\Delta\)AHG; \(\Delta\)AHK=\(\Delta\)ADK)
=> KG2 = DK2 + BG2 (đpcm).