K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho  BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng...
Đọc tiếp

1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho  BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF

2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất.

3.. ABCD là hình chữ nhật có AB //CD, AB = 2CB. Từ A kẻ đường thẳng vuông góc với đường chéo BD tại H. Trên HB lấy điểm K sao cho HK = HA. Từ K kẻ đường thẳng song song với AH cắt AB tại E. Lấy M trung điểm DE, tia AM cắt DB tại N, cắt DC tại P.

Tính tỷ số diện tích tam giác AND với diện tam giác PMD?

 

0
21 tháng 2 2019

a. Dễ thấy \(AEMF\)là hình chữ nhật \(\Rightarrow\) \(AE=FM\)
Dễ thấy \(\Delta DFM\) vuông cân tại F \(\Rightarrow FM=DF\)
\(\Rightarrow AE=DF\) \(\Rightarrow\)tam giác vuông ADE bằng tam giác vuông DCF ( \(AE=DF;AD=DC\) \(\Rightarrow\) \(DE=CF\)
tg vuông ADE = tg vuông DCF => ^ADE = ^DCF => DE vuông góc CF (1) ( vì đã có AD vuông góc DC) 
b) Tương tự câu a) dễ thấy AF = BE => tg vuông ABF = tg vuông BCE => ^ABF = ^BCE => BF vuông góc CE ( vì đã có AB vuông góc BC) (2) 
Gọi H là giao điểm của BF và DE 
Từ (1) ở câu a) và (2) => H là trực tâm của tg CEF 
Mặt khác gọi N là giao điểm của BC và MF. dễ thấy CN = DF = AE: MN = EM = A F => tg vuông AEF = tg vuông CMN => ^AEF = ^MCN => CM vuông góc EF ( vì đã có CN vuông góc AE) => CM là đường cao thuộc đỉnh C của tg CE F => CM phải đi qua trực tâm H => 3 đường thẳng DE;BF,CM đồng quy tại H 
c) Dễ thấy AE + EM = AE + EB = AB = không đổi 
(AE - EM)^2 >=0 <=> AE^2 + EM^2 >= 2AE.EM <=> (AE + EM)^2 >=4AE.EM <=> [(AE + EM)/2]^2 >= AE.EM <=> AB^2/4 >=S(AEM F) 
Vậy S(AEM F ) max khi AE = EM => M trùng tâm O của hình vuông ABCD

24 tháng 2 2018

Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

11 tháng 10 2016

câu a của bài 3 là tứ giác ADME nhé mn

 

ai giúp mình đc không ạ ????????????????iu các bạn nhiều lắm các bạn trả lời đúng nha đừng sai đó :D:))))))))Bài 1: Cho hình bên, ABCD là hình thang ( AB//CD ) có AB = 12,5cm; CD =28,5cm; DABˆ = DBCˆ. Tính độ dài đoạn BD gần nhất bằng bao nhiêu?Bài 2: Tứ giác ABCD có AB = 2cm; BC = 6cm; CD = 8cm; DA = 3cm và BD =4cm. Chứng minh rằng:a) Δ BAD ∼ Δ DBCb) ABCD là hình thangBài 3*: Cho hình vẽ như bên, biết EBAˆ = BDCˆa)...
Đọc tiếp

ai giúp mình đc không ạ ????????????????iu các bạn nhiều lắm các bạn trả lời đúng nha đừng sai đó :D

:))))))))

Bài 1: Cho hình bên, ABCD là hình thang ( AB//CD ) có AB = 12,5cm; CD =
28,5cm; DABˆ = DBCˆ. Tính độ dài đoạn BD gần nhất bằng bao nhiêu?
Bài 2: Tứ giác ABCD có AB = 2cm; BC = 6cm; CD = 8cm; DA = 3cm và BD =
4cm. Chứng minh rằng:
a) Δ BAD ∼ Δ DBC
b) ABCD là hình thang
Bài 3*: Cho hình vẽ như bên, biết EBAˆ = BDCˆ
a) Trong hình vẽ có bao nhiêu tam giác vuông? Kể tên các tam giác vuông đó.
b) Cho AE = 10cm, AB = 15cm, BC = 12cm. Hãy tính độ dài các đoạn thẳng CD,
BE, BD và ED (làm tròn đến chữ số thập phân thứ nhất)
c) So sánh diện tích tam giác BDE với tổng diện tích hai tam giác AEB và BCD
Bài 4: Trên một cạnh của một góc xOy ( Ox ≠ Oy ) đặt các đoạn thẳng OA = 5cm,
OB = 16cm Trên cạnh thứ hai của góc đó đặt các đoạn thẳng OC = 8cm, OD =
10cm.
a) Chứng minh Δ OCB ∼ Δ OAD
b) Gọi I là giao điểm của các cạnh AD và BC. Chứng minh rằng Δ IAB và Δ ICD
có các góc bằng nhau từng đôi một

1

zồi ôi dài quá

28 tháng 2 2020

a) Câu hỏi của Nguyễn Phương Thảo - Toán lớp 9 - Học toán với OnlineMath

8 tháng 4 2022

a) Xét ΔABD vàΔ HAD có:

     \(\widehat{DAB}\) =\(\widehat{AHB}\)= 90o( gt)

         \(\widehat{D}\) chung

⇒Δ ABD ∼ ΔHAD(g-g)

b) Áp dụng định lí Py-ta-go vào Δ ABD vuông tại A ta có:

   BD=\(\sqrt{AD^2+AB^2}\)=\(\sqrt{3^2+4^2}\)=\(\sqrt{25}\)=5(cm)

Theo câu a ta có:Δ ABD ∼ ΔHAD

\(\dfrac{BD}{AD}\)=\(\dfrac{AD}{HD}\)hay \(\dfrac{5}{3}\)=\(\dfrac{3}{HD}\)⇒HD=\(\dfrac{3.3}{5}\)=1,8 (cm)

 

 

a: Xét ΔABD vuông tại A và ΔHAD vuông tại H có

góc ADH chung

Do đó: ΔABD\(\sim\)ΔHAD

b: \(BD=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(HD=\dfrac{AD^2}{BD}=1.8\left(cm\right)\)

a: Xét ΔAHB vuông tại H và ΔDAB vuông tại A có

góc ABH chung

=>ΔAHB đồng dạng vơi ΔDAB

b: \(BD=\sqrt{12^2+16^2}=20\left(cm\right)\)

BH=12^2/20=7,2cm

AH=12*16/20=9,6cm

30 tháng 6 2017

Hình chữ nhật

Ta có \(DE=AM\ge AH\). Dấu " = " xảy ra khi \(M\equiv H\)

Vậy DE có độ dài nhỏ nhất là AH khi điểm M là trung điểm của BC.