Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\Delta CAO~\Delta OBD\left(g-g\right)\)
\(\Rightarrow\frac{OA}{BD}=\frac{AC}{OB}\Rightarrow\frac{AB}{2BD}=\frac{2AC}{AB}\Rightarrow AB^2=4.AC.BD\)
b, \(\Delta CAO~\Delta COD\left(c-g-c\right)\Rightarrow\widehat{ACO}=\widehat{MCO}\)
\(\Delta CAO=\Delta CMO\left(ch-gn\right)\Rightarrow AC=CM\)
c, Gọi giao điểm MH và BC là N
Tương tự b, BD=MD
Do \(CA//BD\Rightarrow\frac{CA}{BD}=\frac{CN}{NB}\Rightarrow\frac{CN}{NB}=\frac{CM}{MD}\)
\(\Rightarrow MN//BD\Rightarrow NH//BD\Rightarrow\frac{NH}{BD}=\frac{NA}{BD}\Rightarrow\frac{NH}{BD}=\frac{CN}{NB}\Rightarrow\frac{NH}{BD}=\frac{NM}{BD}\)
\(\Rightarrow NM=NH\)
d, Ta có: \(S_{ABCD}=\frac{\left(CA+BD\right)AB}{2}\ge\frac{AC.BD.AB}{2}=\frac{\frac{AB^2}{4}.AB}{2}=\frac{AB^3}{8}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}AC=BD\\AC.BD=\frac{AB^2}{4}\end{cases}\Rightarrow}AC=BD=\frac{AB}{2}\)
OK, GOOD LUCK!!!
a, Dễ cm ON là đường trung bình của \(\Delta CAK \Rightarrow ON//AK\)
Mà \(ON//BH\) ( cùng vuông góc với AC) \(\Rightarrow AK//BH\) (1)
CM tương tự ta có: OM là đường trung bình của\(\Delta CKB\Rightarrow OM//BK\)
Mà \(OM//AH\)(cùng vuông góc với AC) \(\Rightarrow AH//BK\) (2)
Từ (1) và (2) suy ra KAHB là hình bình hành
b,Vì KAHB là hình bình hành ( theo câu a)
\(\Rightarrow AH=BK\)
Mà \(OM=\dfrac{1}{2}BK\) ( do OM là đường trung bình của\(\Delta CBK\))
\(\Rightarrow OM=\dfrac{1}{2}AH\) \(\Rightarrow ĐPCM\)
a: ΔABC vuông cân tại A
mà AM là trung tuyến
nên AM là phân giác của góc BAC
Xét tứ giác AEDF có
góc AED=góc AFD=góc FAE=90 độ
AD là phân giác của góc FAE
=>AEDF là hình vuông
b: AEDF là hình vuông
=>góc AEF=45 độ
=>góc AEF=góc ABC
=>EF//BC